matlab的欧拉方法代码神经元网络模型 动态耦合激发大脑中神经元的模型以产生复杂的网络同步 该项目提供了Matlab代码来模拟以下情况: 一个发射神经元细胞,使用三种不同的模型。 x个激发神经元的网络,使用静态耦合矩阵耦合在一起。 x个激发神经元的网络,使用基于神经元细胞之间突触模型的动态耦合功能耦合在一起。 在single_neuron_models目录中,运行着一些程序来模拟单个激发神经元的行为。每个程序的顶部都有一些示例运行。 OneNeuronTau.m:基于Tau常数的简单模型 OneNeuronIzhInF.m:伊兹凯维奇着名的“整合并发射”神经元模型 OneNeuronExpInF.m:更复杂的指数神经元模型 在Neuron_network_models目录中,运行程序“ Neuron Simulations”以打开一个GUI,该GUI允许配置和显示神经元网络。 NeuronSimulations.m:包含所有不同模型和行为的GUI NeuronNetworkTau.m:对通过耦合矩阵连接在一起的“ Tau激发”神经元网络进行建模。 使用正向Euler方法计算每个神经元
2021-12-12 12:38:03 461KB 系统开源
1
Computer Vision__Statistical Models for Marr’s Paradigm.pdf
2021-12-11 15:53:04 104.97MB 计算机视觉资料
1
罗斯·曼·卡格 使用监督学习模型和时间序列分析,可以预测Rossmann药店的未来6周销售情况。 应用了所有数据科学步骤,包括数据清理,探索性数据分析,数据准备,创建机器学习模型,性能分析(MAE,MAPE,RMSE)以及使用Flask和Heroku部署到云中。
1
第3部分 Mosfet Models for Spice Simulation, Including BSIM3v3 and BSIM4.part3
2021-12-09 13:51:18 14.92MB Mosfet Models Spice
1
一篇hmm的经典论文,其中的一些不认识的单词已做了注释,是学习hmm的最好资料了。
2021-12-08 20:09:13 2.62MB HMM 语音识别
1
我们为面板数据开发了一个广义动态因子模型,目的是估计未观察到的指数。 虽然在动态因子分析的文献中已经开发了类似的模型,但我们的贡献是三方面的。 首先,与在每个时间段测量同一主题的多个属性的简单动态因素分析相反,我们的模型还考虑了多个主题。 因此它适用于面板数据框架。 其次,我们的模型为每个时间段的每个受试者估计了一个独特的未观察到的指数,这与之前使用所有受试者通用的时间指数的工作相反。 第三,我们开发了一种新颖的迭代估计过程,我们称之为两周期条件期望最大化 (2CCEM) 算法,并且足够灵活以处理各种不同类型的数据集。 该模型应用于测量与供水和卫生设施运营相关的属性的面板上。
2021-12-07 19:28:40 379KB Dynamic Factor Models
1
(中英对照)特斯拉Tesla ModelS 维修手册.电路图.零件手册.维修工时车主手册,2623页
Computer Vision - Models, Learning, and Inference。计算机视觉,模型学习和推理的英文版。
2021-12-04 18:18:56 110.31MB 计算机视觉 入门 英文 人工智能
1
预测模型 使用时间序列模型对R中的英国GDP进行预测 使用的模型:ARIMA,auto.arima,Naive,ETS 对于模型性能评估,考虑了Diebold / Mariano测试和RMSE。 上传了项目摘要doc文件,以供详细参考。
2021-12-04 10:16:24 684KB
1
经典著作,不用多介绍了。 Most tasks require a person or an automated system to reason--to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
2021-12-04 01:39:17 7.45MB Graphica Models
1