资源给大家带来一个利用卷神经网络(CNN)进行中文OCR识别,实现自己的一个OCR识别工具。 一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,这样可节省人力打字的时间。
2023-03-07 19:34:57 2.34MB OCR 人工智能 卷积神经网络
1
这是一个手把手教你用 Tensorflow 构建卷机网络(CNN)进行图像分类的教程。教程并没有使用 MNIST 数据集,而是使用了真实的图片文件,并且教程代码包含了模型的保存、加载等功能,因此希望在日常项目中使用 Tensorflow 的朋友可以参考这篇教程。 概述 --- • 代码利用卷网络完成一个图像分类的功能 • 训练完成后,模型保存在 model 文件中,可直接使用模型进行线上分类 • 同一个代码包括了训练和测试阶段,通过修改 train 参数为 True 和 False 控制训练和测试 数据准备 --- 教程的图片从 Cifar 数据集中获取,download_cifar.py 从 Keras 自带的 Cifar 数据集中获取了部分 Cifar 数据集,并将其转换为 jpg 图片。 默认从 Cifar 数据集中选取了 3 类图片,每类 50 张图,分别是 • 0 => 飞机 • 1 => 汽车 • 2 => 鸟 图片都放在 data 文件夹中,按照 label_id.jpg 进行命名,例如 2_111.jpg 代表图片类别为 2(鸟),id 为 111。
2023-03-06 17:25:53 224KB Tensorflow 卷积网络 CNN 图像分类
1
资源给大家带来一个利用卷神经网络(pytorch版)实现空气质量的识别分类与预测。 我们知道雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好. 空气质量评价的主要污染物为细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、臭氧(O3)、一氧化碳(CO)等六项。
1
3*3卷核与2*5卷核对神经元大小的设置 #这里kerner_size = 2*5 class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类 def __init__(self): super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性 # super()需要两个实参,子类名和对象self self.conv1 = nn.Conv2d(1, 32, (2, 5), 1, padding=0) self.conv2 = nn.Conv2d(32, 1
2023-03-03 14:46:01 67KB c OR padding
1
网络模型共含有19层,其中7层传统卷层、8层深度可分离卷层、4层最大池化层。同时,使用了 Adam优化器及对数损失函数。网络结构如图4所示,顺序从左至右、从上至下,并做以下说明: Conv为传统卷层,其后3个参数分别代表:卷核个数、卷核大小、步长。 activation表示该层对应的激活函数。 SeparableConv为深度可分离卷层,其后2个参数分别代表:卷核个数、卷核大小,步长均为 1。 MaxPooing为最大池化层,其后2个参数分别代表:滤波器大小、步长。 ReLU为线性整流函数,作为卷后的激活函数,相比sigmoid函数和tanh函数有着更好的效果。 softmax用于将最后一层卷输出的七个数值映射到(0,1)区间,并使它们和为 1。 这样能更直观地以概率的形式显示结果。 在每一层卷过后,都加入了批量归一化(Batch Normalization,BN)层,图中未标出。批量归一化对网络训练的各个方面都有一定的提升作用。它可以加快训练并提高性能、解决梯度消失的问题、规范权重、优化网络梯度流等,所以很有必要加入。 整个网络参数数量仅为75906个,其中可训
2023-03-02 21:47:08 1.02MB 卷积神经网络
1
cnn图像分类。通过已有的大量的花卉图片素材,编写卷神经网络对花卉图片训练集进行训练,并且将训练后所得模型存放在指定文件夹。再编写一个简洁的python图形的用户交互界面,实现图片的选择,根据训练出来的神经网络将识别结果输出,并通过绘制的图形进行分析和评估。实验对比后发现花卉图像分类识别效果较好,测试集准确率达到了99%以上,具有较高的识别准确率和稳定性。
2023-03-02 19:48:04 208.41MB 机器学习 Python CNN
1
文件中的代码有些是ipynb文件,将其转换为py文件,操作步骤如下: pip install jupyter win+R,输入cmd,回车 cd+空格+ipynb文件所在路径 输入:jupyter nbconvert --to script *.ipynb,该路径下的ipynb文件均可转为py文件 详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/122538153?spm=1001.2014.3001.5502
2023-03-01 22:00:58 1.38MB 卷积 神经网络 交通标志识别 源码
Python 实现LSB算法进行信息隐藏 包含空域与变换域 JPEG信息隐藏算法 对PDF文件进行信息隐藏 基于卷神经网络的隐写分析 Matlab SRM、SCA隐写分析• 空域编码是指在图像空间域进行编码,也就是直接针对图像像素进行编码 • 对像素进行编码,如 LSB 算法,主要有下面两种方式 ◦ 光栅格式 ◦ 调色板格式 GIF(graphics interchange format) • 一个图像编码标准往往包括多类编码方法,一个图像仅仅是其一类方法的实例。例如,常见的 BMP(Bitmap)、 TIFF( Tagged Image File Format)、 PNG(Portable Network Graphics)均支持光栅格式与调色板格式编码,对这两种格式 编码分别又支持多种具体编码方法 LSB 隐写算法 --- • LSB 隐写是最基础、最简单的隐写方法,具有容量大、嵌入速度快、对载体图像质量影响小的特点 • LSB 的大意就是最低比特位隐写。我们将深度为 8 的 BMP 图像,分为 8 个二值平面(位平面),我们将待嵌入的信息(info)直接写到最低
2023-03-01 15:14:34 304.02MB LSB算法 JPEG信息隐藏算法
1
基于CNN训练的一套 "端到端" 的验证码识别模型,使用深度学习+训练数据+大量计算力,纯数字识别率高达 99.99%,数字+字母识别率 96%
1
Gabor卷神经网络实现非接触掌纹识别
1