路由matlab仿真代码 人工智能 研究领域包括计算机视觉、生物视觉、自动驾驶的工具。 入门 深度学习、深度强化学习,具体子问题包括视觉目标跟踪和平稳跟踪的相关性、多目标跟踪等。 环境 开发测试平台Ubuntu 18.04、Windows 10。 Matlab 2018a Python 3.6 安装 所有安装包 Matlab 2018a Matlab 2018a(包括Windows、Linux、Mac平台的安装包及安装步骤) Python Python 3.6.5(Anaconda3-5.2.0) 添加环境变量:C:\Users\dong\Anaconda3 C:\Users\dong\Anaconda3\Scripts pip install opencv_python-3.4.2-cp36-cp36m-win_amd64.whl pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tqdm pip install -i https://pypi.tuna.tsinghua.edu.cn/simple gym==0.
2021-11-10 19:16:08 3.24MB 系统开源
1
深度强化学习(Deep Reinforcement Learning )是研究的热点之一,在2019年DeepMind OpenAI等发表多篇热门论文。来自SprekelerLab的博士生 Robert Tjarko Lange总结了2019年十大深度强化学习论文,涉及到大型项目、模型RL、多代理RL、学习动力学、组合先验等,值得一看。
2021-11-08 20:15:32 40.84MB DRL
1
tsp matlab代码使用深度强化学习方法和注意力模型来解决多目标TSP。 该代码是具有四维输入(欧几里得类型)的模型。 具有三维输入的模型(混合类型)在RL_3static_MOTSP.zip中。 本文中用于可视化和比较的Matlab代码位于MOTSP_compare_EMO.zip中。 在tsp_transfer _... dirs中可以找到经过训练的模型。 要测试模型,请使用Post_process目录中的load_all_rewards。 要训​​练模型,请运行train_motsp_transfer.py 为了可视化获得的帕累托阵线,应使用Matlab对结果进行可视化。 Matlab代码位于.zip文件中。 它位于“ MOTSP_compare_EMO / Problems / Combinatorial MOPs / compare.m”中。 用于批量生成数字。 首先,您需要运行train_motsp_transfer.py来训练模型。 运行load_all_rewards.py以加载和测试模型。 还将获得的Pareto Front转换为.mat文件 运行Matlab代码
2021-11-08 15:58:24 158.13MB 系统开源
1
深度强化学习以实现动态组合管理 STAT 461课程项目 张克南 该存储库是提出的用于动态投资组合管理的强化学习模型的实现 。 动机 动态投资组合管理描述了根据股票价格顺序分配资产集合以最大化长期收益的过程。 从本质上讲,它属于强化学习的名声,代理商通过与环境互动来学习最佳策略。 因此,我们可以将投资组合的重新分配视为“行动”,将股票市场视为“环境”,将立即的投资回报视为“回报”。 问题陈述 考虑一个由m个资产和现金组成的投资组合。 我们使用向量w表示每项资产的权重,因此权重之和等于1。假设最后一次重新分配后的权重为w t-1 ,则在当前时间步结束时,权重转移到w ' t由于股票价格变动。 然后,我们需要重新分配投资组合,以使权重等于w t 。 MDP框架 与其他强化学习模型相同,我们需要首先将动态投资组合优化问题表述为马尔可夫决策过程(MDP)。 状态S T:标准化价格的历史很短。 考
2021-11-06 16:36:30 6.09MB JupyterNotebook
1
使用Pytorch和多项式分布采样实现DDQN算法 DDQN和Nature DQN一样,也有一样的两个Q网络结构。在Nature DQN的基础上,通过解耦目标Q值动作的选择和目标Q值的计算这两步,来消除过度估计的问题。
2021-10-28 10:11:39 49KB Pytorch DDQN 深度强化学习
1
深度强化学习代码 当前,这里只有用于分布增强学习的代码。 C51,QR-DQN和IQN的代码与略有。 QUOTA是基于算法作者同的工作而实现的。 我最近注意到,我的DQN代码可能无法获得理想的性能,而其他代码却运行良好。 如果有人可以指出我的代码中的错误,我将不胜感激。 随时进行聊天-如果您想讨论任何事情,请给我发送电子邮件。 依赖关系: pytorch(> = 1.0.0) 体育馆(= 0.10.9) 麻木 matplotlib 用法: 为了运行我的代码,您需要在主目录下创建两个子目录:./data/model/&./data/plots/。 这两个目录用于存储数据。 当计算机的python环境满足上述依赖性时,您可以运行代码。 例如,输入: python 3_ iqn . py Breakout 在命令行上运行以在Atari环境中运行算法。 您可以为代码内的算法更改一些特定参数。 训练后,您可以通过使用适当的参数运行result_show.py来绘制结果。 参考文献: 通过深度强化学习(DQN)进行人为控制[] [] 强化学习的分布式视角(C51)[] []
1
最新的技术进步提高了交通运输的质量。新的数据驱动方法为所有基于控制的系统(如交通、机器人、物联网和电力系统)带来了新的研究方向。
1
这是论文《Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments》的pytorch复现,直接使用其开源环境Multi-Agent Particle Environment,运行main.py即可进行运行程序
深度强化学习,用于具有多样性代表奖赏的无监督视频摘要。 使用python = 3.x实现 要求 python = 3.x 火炬 显卡 制表 开始吧 git clone https://github.com/TorRient/Video-Summarization-Pytorch cd Video-Summarization-Pytorch mkdir dataset 准备数据集 将视频放入文件夹数据集中 python create_data.py --input dataset --output dataset/data.h5 分割 python create_split.py -d dataset/data.h5 --save-dir dataset --save-name splits --num-splits 5 如何训练 python train_video_summar
1
德鲁 无线供电的移动边缘计算网络中在线计算卸载的深度强化学习 使用Python代码重现我们的DROO算法以进行无线供电的移动边缘计算[1],该算法使用随时间变化的无线信道增益作为输入并生成二进制卸载决策。 这包括: :基于实现的WPMEC的DNN结构,包括训练结构和测试结构。 :基于。 :基于实现。 :解决资源分配问题 :所有数据都存储在此子目录中,包括: data _#。mat :训练和测试数据集,其中#= {10,20,30}是用户编号 :针对DROO运行此文件,包括设置系统参数,基于 :基于。 :基于实现。 :当WD的权重​​交替时,运行此文件以评估DROO的性能 demo_on_off.py :当某些WD随机打开/关闭时,运行此文件以评估DROO的性能 引用这项工作 L. Huang,S。Bi和YJ Zhang,“用于无线移动边缘计算网络中在线计算
2021-10-11 17:51:48 24.01MB Python
1