运行了几个机器学习模型,根据DEAP数据集对4种维度的情绪进行分类:唤醒、效价、喜欢/不喜欢和支配。使用了两种类型的特征提取工具:快速傅立叶变换(FFT)和连续小波变换(CWT),并比较了它们在情绪分类任务中的结果。
将FFT和CWT分别结合CNN,并进行对比,最终与普通的机器学习模型做对比,
本项目实现了:
1. 模拟和实验模型设置的细节,以及详细介绍了使用的超参数,并介绍了所有模型的细节。
2. 介绍并讨论从运行FFT和CWT特征提取算法的模型中获得的结果,以及与其他最先进(SOTA)模型的比较。
3. 总结报告,并讨论了未来在脑电信号处理领域中使用深度学习技术来缓解数据非平稳性的工作。还将讨论处理EEG信号的其他方法。