重投影残差,按照字面意思解释就是在第二次重新投影的二维像素点与第一次投影得到的像素点之间的残差(欧式距离)大小,残差的大小反映的就是测量仪器的精度以及外界因素对测量结果的干扰,即测量误差的大小。
1
基于keras的ResNet-50实现,可以结合文章https://blog.csdn.net/qq_34213260/article/details/106314320了解网络原理和实现
1
利用残差插值的彩色图像去马赛克 !!
2021-05-14 12:49:09 4.8MB 去马赛克
1
参考参考,希望大家多多参考参考。欢迎指正,谢谢了
2021-05-14 02:23:58 1KB 残差模型
1
此程序是一个残差网络的程序,此文件中含有的功能可以让初学者用来学习和了解残差网络的基本原理和实现过程
2021-05-11 16:28:08 185KB 深度学习 resnet
1
残差网络50层模型,可用于图像分类,图像检索,训练数据来自ImageNet。从github上下载网速太慢,很难下载下来,我还是用公司服务器好不容易才下载下来的,亲测可用,发上来赚点资源积分自己用,请支持
2021-05-09 22:09:08 90.68MB resnet50 残差网络 ImageNet 图像检索
1
(1)小目标在图像中所占像素很少,经过多层卷积之后提取得到的特不明显,为了改善 YOLOv3 的小目标特征提取性能,通过将原网络模型中经 2 倍降采样的特征图进行卷积分别叠加到第二及第三个残差块的输入端,以此增强浅层特征信息。同时,在第一个 8 倍降采样的特征图后连接 RFB 模块,增强特征提取能力。 (2) 原网络中采用多次步长为 2 卷积操作代替池化层来进行特征图的下采样操作,降低了特征的传递能力。为此,本文借鉴 Dense Net 的思想,采用密集连接的方式将浅层特征图直接传输到深层同尺度卷积层的输入端。这样不仅能增强浅层特征重用能力,而且还可以有效缓解梯度消失问题。 (3) 提出了基于泛化 Io U 的回归损失函数代替原回归损失函数。通过在损失函数中加入锚框与真实框中心点距离相关以及预测框与真实框面积相关的两个惩罚项,使预测框的定位更加准确;并同时解决了两框无交集时的梯度消失的问题。本文基于以上三点改进分别在 PASVAL VOC 数据集和 VEDAI 数据集上与原网络进行对 比实验。训练过程中,在训练批次相同的条件下训练时长相当。实验结果表明,上述三点同时作用于原 YOLOv3 网络时,在小目标检测上具有更低的漏检率,定位更加准确,且检测速度相仿。
一、首先围绕烟雾检测问题,对其基本内容、理论研究与系统开发进行综述;接着对深度卷积神经网络,以及深度目标检测网络进行了详细介绍。二、研究基于改进 Mobile Net V2-SSD 的烟雾视频检测算法:首先提出新型重构金字塔结构,以提升小型烟雾目标的检测精度;然后提出基于烟雾先验特征的候选框参量设定方法,以快速准确的定位烟雾目标;接着引入了基于 SE-Net 模块的特征增强抑制机制,以有效提高特征表达能力;最后通过在雾检的准确率。三、研究基于改进 3D 残差稠密网络的烟雾视频检测算法:首先提出基于先验评分算法的疑似烟雾区域定位,以实现烟雾目标的实时定位;然后提出轻量化 3D 实现烟雾目标的精准检测;接着提出基于烟雾时变特征的动态检测策略,以实现实时性和精准性的最佳折中;最后通过实验对比,本文算法在检测率和准确率等方面都有提升。四、开发并实现了基于深度神经网络的烟雾视频检测系统:首先阐述了系统的需求和架构,然后介绍了系统开发的软件环境与硬件资源,阐明了该系统的具体实现流程;最后展示了对烟雾视频检测的实际运行效果。
_基于三相电流残差的功率管多管开路故障诊断.PDF
2021-05-06 09:01:41 2.36MB 故障诊断
1
光谱残差SR模型 显著性检测 matlab代码 可直接运行
2021-05-04 21:24:21 160KB SR算法
1