矿用刮板输送机链条张力控制系统是一个具有非线性、时变性等特点的复杂控制系统,传统的PID控制将无法满足越来越高的精度要求。为了获得令人满意的控制效果,提出了基于趋近律的滑模控制,在此基础上,为了改善系统的抖振和响应速度,提出了一种改进的趋近律滑模控制,提高系统的初始运动速度,降低系统在切换面附近的趋近速度。通过建立矿用刮板输送机链条张力控制系统的Simulink仿真模型,仿真结果表明,与传统PID控制相比,系统响应速度、控制精度和系统抖振等都得到了显著改善。
1
相控阵代码,fpga代码,波控 包含功能:串口收发,角度解算,flash读写,spi驱动等 fpga代码,包含整体和部分模块的仿真文件。 代码不具有任意天线的通用性,因为和射频模块等硬件的设计有很大关系。 根据提供的文件信息,我们可以梳理出以下知识点: 相控阵技术是一种现代雷达系统的核心技术,它通过电子扫描而不是机械扫描来控制雷达波束的方向。这种技术能够同时处理多个目标,具有快速扫描和跟踪目标的能力。相控阵雷达广泛应用于军事和民用领域,如航空交通控制、天气监测和卫星通信等。 在相控阵系统中,波控是至关重要的一个环节,它负责管理雷达波束的形成、指向以及波束的参数调整。波控通常需要依赖精确的角度解算,这样雷达波束才能正确地指向目标。角度解算是相控阵雷达的核心算法之一,涉及复杂数学运算和信号处理。 串口收发在相控阵系统中主要用于系统内部不同模块之间的数据交换。例如,从控制模块发送指令到天线阵面,或者从天线阵面接收回传的信号数据。串口通信因其简单和低成本而被广泛采用。 Flash读写功能允许系统在非易失性存储器中存储或读取配置参数、校准数据等。这对于系统初始化和故障恢复至关重要。SPI(串行外设接口)驱动则是实现高速数据通信的一个重要接口,它用于连接微控制器和各种外围设备,如模拟-数字转换器、数字-模拟转换器等。 FPGA(现场可编程门阵列)代码在相控阵系统中扮演着关键角色。FPGA因其并行处理能力和灵活可重配置性,成为了实现信号处理算法和高速数据交换的理想选择。FPGA代码通常包括了多个模块的实现,如上述文件中提到的串口收发模块、角度解算模块、Flash读写模块和SPI驱动模块。整个FPGA代码还可能包括仿真文件,以确保在实际部署前能够验证设计的正确性。 需要注意的是,尽管相控阵技术应用广泛,但特定的相控阵代码并不具有通用性。每一套相控阵系统的代码都是针对其硬件设计量身定制的,包括射频模块、天线阵列和其他电子组件。这意味着,相控阵系统的代码开发需要深入理解硬件架构和物理层的工作原理。 相控阵技术的关键在于波控和信号处理算法的实现,而FPGA技术提供了高效执行这些算法的平台。相控阵代码的开发必须考虑与具体硬件设计的紧密配合,而FPGA代码的灵活性和模块化设计则为这种定制化提供了可能。
2025-12-15 17:16:02 145KB csrf
1
微穿孔板吸声系数理论计算,comsol计算,可以算单层,双层串联并联,两两串联后并联的微穿孔板吸声系数。 ,微穿孔板吸声系数综合分析:从理论计算到Comsol仿真计算实践,微穿孔板吸声系数计算方法:单层、双层串联并联及两两串联后并联的精确分析理论,采用COMSOL技术计算的研究。,核心关键词:微穿孔板吸声系数; 理论计算; comsol计算; 单层微穿孔板; 双层串联并联微穿孔板; 两两串联后并联的微穿孔板。,微穿孔板吸声系数:理论计算与Comsol模拟
2025-12-15 15:23:38 454KB xbox
1
在进行MATLAB单端反激DC/DC变换器的仿真时,首先需要对电路进行基本参数的设定和计算。本仿真案例中使用的变换器额定功率为50W,输入电压为72V,输出电压为15V。滤波电容C被设置为4.7mF。在选择开关器件时,使用了MOSFET,开关频率则设定为20kHz。变压器变比为72:18,这表示通过变压器将输入电压降低到输出所需的15V。变压器在SimPowerSystems工具箱中选用,并以标幺值制进行参数设置,其额定功率和频率分别为50VA和20kHz。其中,变压器绕组的电压、电阻和电感值被设定为绕组1为72V、0.001Ω和0H,绕组2为18V、0.001Ω和0H,而励磁电阻和电感分别设置为200Ω和20H。 仿真中,首先进行了额定负载条件下的仿真。计算额定负载下的电阻值,公式为R=U^2/P,其中U为输出电压,P为功率。根据公式得到R=15^2/50=4.5Ω。然后调整占空比以达到输出电压稳定在15V。仿真结果表明,当占空比为45%时,输出电压能够稳定。在仿真过程中记录了MOSFET和整流二极管的工作波形。 仿真报告还探讨了如何改善电路的启动特性,减少输出电压超调问题。提出增加电容的大小,以减小电容两端电压的上升速度,从而降低启动过程中的超调。仿真结果显示,电容增倍后输出电压的超调量有明显降低。此外,也可以通过在输出环节加入RLC电路进行调节,以达到改善启动特性的目的。 对于小负载的仿真,负载电阻被设定为200Ω,直流电容的初始电压为14V。仿真中,调整占空比至8%以使输出电压达到15V。在这一条件下,记录了MOSFET和整流二极管的电流与电压波形。仿真结果提供了MOSFET和整流二极管在小负载下的工作状态,这些数据对于评估变换器在不同负载条件下的性能非常重要。 在整个仿真过程中,所有参数和结果的记录对于理解电路的行为和性能至关重要。通过MATLAB仿真,可以有效地分析电路在不同工作条件下的动态特性,并指导实际电路设计的改进。此外,通过调整和优化电路参数,如电容大小和占空比,可以对电路性能进行有效控制,从而实现对变换器性能的优化。
2025-12-15 11:45:54 239KB
1
各种电力电子仿真matlab simulink仿真 单相全桥 半桥整流仿真 单相半波全波仿真 三相全桥 半桥整流仿真 三相半波全波仿真 三相桥式整流及其有源逆变仿真 单相桥式整流及其无源逆变仿真 升降压斩波电路 boost—buck电路仿真。 电力电子仿真技术是一种借助软件模拟电力电子装置在不同条件下的工作状态和性能的方法。其目的在于在实际制造和应用前,能够预测电子设备的工作表现,从而优化设计、节省成本、提高可靠性。Matlab Simulink是电力电子仿真领域常用的软件之一,它通过图形化界面和模块化设计,使得工程师能够快速构建复杂的电子系统仿真模型。 本文将对电力电子仿真中的关键概念进行介绍,重点分析单相全桥与半桥整流、单相半波与全波整流、三相全桥与半桥整流、三相桥式整流及有源逆变、单相桥式整流及无源逆变等电路仿真。升降压斩波电路和boost-buck电路的仿真也是电力电子仿真的重要内容。 在单相全桥与半桥整流仿真中,通常会通过Simulink搭建电路模型,模拟交流电压经过整流后转变为直流电压的过程。单相半波与全波整流电路的仿真可以帮助理解整流过程中的波形变化、脉动频率以及整流效率等问题。 三相整流电路的仿真,无论是全桥还是半桥,都需要考虑相位差异对整流效果的影响。这类仿真有助于分析三相电源在不同负载条件下的性能,以及对整流后的直流电压或电流波形进行优化。 三相桥式整流及其有源逆变仿真,涉及将直流电能逆变成交流电能的过程。此类仿真可以帮助设计者了解电力电子装置在能量回馈系统中的工作方式。 单相桥式整流及其无源逆变仿真,通常用于较低功率的应用场合。通过仿真,可以研究无源逆变器在不同负载特性下的工作表现。 升降压斩波电路和boost-buck电路仿真,则主要关注电能的转换和控制。升降压斩波电路通过控制开关器件的导通与断开来实现输出电压的升降;而boost-buck电路通过调整开关器件的工作模式,可以实现输出电压高于或低于输入电压,广泛应用于电源管理和电机驱动等领域。 通过深入探究电力电子仿真下的单相与三相整流及逆变仿真,可以加深对电力电子器件在不同应用中工作原理的理解,为电力电子产品的设计、测试和优化提供有力支持。 电力电子仿真技术分析深入理解各种应用、电力电子仿真技术与应用研究、电力电子仿真技术从单相到三相的深入探索、探究电力电子仿真下的单相与三相整流及逆变等文件,从理论到实践,全面阐释了电力电子仿真技术的应用和发展,为相关领域的研究提供了丰富的资料。 电力电子仿真下的详细分析与仿真实践引言,则为读者提供了仿真实践的入门指导,帮助读者快速理解仿真技术的重要性和应用前景。通过这些内容的学习,可以掌握电力电子仿真技术的基本原理和操作技能,从而在电力电子领域取得更深入的研究成果。 电力电子仿真技术通过模拟真实电路的工作过程,不仅大大提高了电力电子系统设计的效率和安全性,也为电力电子技术的研究和创新提供了有力的工具。随着计算机技术的不断进步,电力电子仿真技术将变得更加精确和高效,为未来电力电子技术的发展注入新的活力。
2025-12-14 23:37:46 167KB 数据结构
1
内容概要:本文详细介绍了三相桥式全控整流及其有源逆变技术的特点、应用场景及Simulink仿真的具体方法。首先对三相桥式全控整流进行了概述,指出它作为一种电力电子设备,在直流电机驱动、变频器、UPS电源等领域广泛应用。接着阐述了其电路结构简单、控制灵活、波形具有正弦波特性等特点。然后重点讲解了利用Simulink进行仿真的步骤,展示了不同触发角和负载条件下的波形变化情况,通过具体的波形图直观地反映了触发角和负载对整流效果的影响。最后得出结论,强调了三相桥式全控整流的重要性和优越性能。 适合人群:从事电力电子相关领域的研究人员和技术人员,尤其是对三相桥式全控整流及其有源逆变技术感兴趣的读者。 使用场景及目标:帮助读者深入理解三相桥式全控整流的工作机制和技术特性,为实际工程应用提供理论支持和参考依据。 其他说明:文中提供的Simulink仿真说明图有助于读者更直观地理解三相桥式全控整流的波形特征和仿真结果。
2025-12-14 23:35:58 656KB
1
在现代电子工程领域,利用仿真软件进行电路设计已经成为了一种常态。Multisim是一款功能强大的电路仿真软件,它可以进行电路设计、仿真以及分析。在设计压阻式压力传感器电路时,利用Multisim能够模拟实际电路的性能和响应,这对于优化电路设计,降低成本以及缩短研发周期都具有重要意义。 在设计电路之前,需要了解压阻式压力传感器的基本原理。压阻式传感器通常由半导体或金属材料制成,其电阻值会随着受到的压力变化而变化。这一变化可以通过相应的电路进行检测和放大,从而实现压力的测量。 在Multisim中进行电路设计,首先要建立电源单元,为电路提供稳定的工作电压。电源单元的设计需要考虑到电压稳定性和电流供应能力,以保证电路能够正常工作。接着,是压力传感器单元的设计,这一部分是整个电路的核心。在Multisim中,我们可以通过软件自带的模型或者用户自定义模型来模拟实际的压阻式传感器。设计时需考虑传感器的灵敏度、量程以及输出特性。 放大电路单元是将传感器单元的微弱信号放大到可以处理的程度。在设计放大电路时,需要选择合适的放大器类型和参数,如运算放大器的选择、反馈电阻的计算等,以达到最佳的放大效果。此外,滤波电路单元也是必不可少的,因为压力传感器输出的信号往往会含有噪声和干扰,滤波电路的作用就是去除这些不需要的信号成分,保证输出信号的准确性和稳定性。 在设计上述各个单元时,Multisim提供了一系列工具,包括丰富的元件库、电路仿真分析工具、信号源等,这些都大大简化了设计流程,提高了设计的准确性和效率。设计完成后,还可以通过仿真验证电路的实际表现,比如测量电路的响应时间、频率响应特性、温度漂移等参数,进而进行必要的调整和优化。 除了电路设计外,Multisim还支持对电路板进行布局设计,这为实际生产提供了参考。在电路板设计时,要考虑元件的布局、走线以及散热等因素,确保电路板的稳定性和可靠性。 此外,文档资源下载地址和密码的提及,暗示了该仿真设计可能与网络资源的下载和使用相关,可能是为了获取特定的仿真模型或者数据。这一点对于使用Multisim进行设计的工程师来说,获取必要的资源同样是完成设计任务的重要一环。 在电子工程教育和实际应用中,压阻式压力传感器的电路设计和仿真分析是重要的一课。基于Multisim软件的仿真设计不仅可以帮助学生和工程师理解电路的理论知识,更能够通过实践提高解决问题的能力。通过在Multisim中进行压阻式压力传感器电路的设计和仿真,可以加深对传感器技术的理解,并为实际应用提供了强大的技术支持。
2025-12-14 19:38:55 56KB 压力传感器
1
内容概要:本文详细介绍了超短脉冲激光辐照下的COMSOL双温模型,涵盖仿真文件的构建、机理分析及其应用场景。首先,文中解释了双温模型的基本概念,即电子温度和晶格温度作为独立变量来描述材料在激光辐照下的温度变化。接着,重点解析了仿真文件的具体设置,包括激光源参数、材料物理属性和观测物理量的选择。然后,从电子-晶格耦合、热量传导和能量吸收三个角度深入剖析了材料在超短脉冲激光辐照下的响应机制。最后,提供了详细的讲解文档,帮助读者全面掌握该模型的原理和应用。 适合人群:从事激光与材料相互作用研究的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解超短脉冲激光辐照下材料响应特性的研究人员,旨在提高对COMSOL Multiphysics软件的理解和应用水平。 其他说明:本文不仅提供理论分析,还包括具体的仿真文件和操作指南,便于读者动手实践并验证理论成果。
2025-12-14 19:13:04 564KB COMSOL
1
内容概要:本文详细介绍了基于线性自抗扰控制(ADRC)的永磁同步直线电机Simulink仿真模型的设计与实现。该模型采用了位置电流双闭环控制结构,位置环使用二阶LADRC,核心是线性扩张状态观测器(LESO),能够快速响应并抑制负载扰动;电流环则采用经典的PI控制,确保电流响应迅速稳定。文中还展示了具体的MATLAB代码实现,包括LADRC的位置控制、PI电流控制以及SVPWM模块的实现方法。此外,文章讨论了离散化处理对仿真的重要性,并分享了将模型从仿真迁移到实际控制器的经验。 适合人群:从事电机控制研究的技术人员、自动化领域的工程师、高校相关专业的研究生。 使用场景及目标:适用于需要提高永磁同步直线电机抗扰动能力和动态响应性能的研究项目。目标是通过ADRC控制算法优化电机控制系统,减少负载变化引起的误差,提高系统的鲁棒性和稳定性。 其他说明:文中提供了详细的代码示例和参数选择建议,有助于读者理解和实现该控制方案。同时强调了模块化设计的优势,便于后期维护和移植。
2025-12-14 10:28:34 1.05MB
1
### 11种常见Multisim电路仿真图介绍 #### 一、直流叠加定理仿真图 直流叠加定理指出,在线性电路中,如果电路中有多个独立源同时作用,那么任一支路的响应(电压或电流)可以视为每个独立源单独作用时所产生的响应的代数和。 **1.1 直流叠加定理仿真图** - **图 1.1**:展示了V1和I1共同作用下电路的状态。 - **图 1.2**:展示了V1和I1分别单独作用时的电路状态。 - **结果分析**: - 当V1和I1共同作用时,R3两端的电压为36.666V。 - V1单独作用时,R3两端的电压为3.333V。 - I1单独作用时,R3两端的电压为33.333V。 - 这三个数值之间的关系表明,V1和I1共同作用的效果与它们单独作用效果的代数和一致,验证了叠加定理的有效性。 #### 二、戴维南定理仿真 戴维南定理说明了一个包含直流源的线性电路可以用一个等效电压源UTH与其内部电阻RTH串联的形式来替代,且这种等效形式对于外部电路而言保持了相同的特性。 **图 2.1**:初始电路配置,展示了Irl=16.667mA,Url=3.333V。 **图 2.2**:断开负载R4后,测量得到的等效电压UTH=6V。 **图 2.3**:在去除直流电源V1后,测得RTH=160Ω。 **图 2.4**:在等效电路中,再次测量得到Irl1=16.667mA,Url1=3.333V。 **结果分析**: - 图2.1中的测试结果与图2.4中等效电路的测试结果基本相同,这证明了戴维南定理的正确性。 #### 三、动态电路的仿真 动态电路仿真包括一阶和二阶动态电路的分析。 **1. 一阶动态电路** - **图 3.1**:展示了一阶动态电路的基本配置。 - **图 3.2**:显示了一阶动态电路的瞬态响应曲线,可以看到V2随着时间的变化而变化,0~500ms间非线性增大,之后趋于稳定。 **2. 二阶动态电路** - **图 3.3**:展示了二阶动态电路的基本配置。 - **图 3.4**:显示了当R1电位器的阻值分别为500Ω、2000Ω、4700Ω时输出瞬态波形的变化情况。 #### 四、交流波形叠加仿真 **图 4.1**:展示了交流波形叠加的电路配置。 - 使用了1kHz 15V、3kHz 5V和5kHz 3V三个不同频率的正弦信号,通过电阻网络进行叠加。 - **图 4.2**:显示了示波器D通道的波形是A、B、C通道波形的叠加,验证了交流波形叠加原理。 #### 五、单管共射放大电路的仿真 **图 5.1**:展示了单管共射放大电路的配置。 - **图 5.2**:显示了输出波形无失真,输出电压为260mV,输入电压为3.536mV,放大倍数为73.5。 - **图 5.3**~**图 5.6**:进一步展示了放大电路的性能参数,包括失真度(1.569%)和幅频特性,这些数据对于电路设计至关重要。 #### 六、负反馈放大器的仿真 **图 6.1**:展示了负反馈放大器的基本配置。 - **图 6.2**:通过改变反馈通路中R6的阻值来观察反馈深度对放大器增益的影响。 - **图 6.3**:展示了当R6的阻值分别为5kΩ、10kΩ、15kΩ时输出瞬态波形的变化情况。 #### 七、运算放大器的仿真 运算放大器是一种重要的线性电路组件,常用于信号处理。 **图 7.1**:展示了一个简单的运算放大器电路配置。 - 根据虚短和虚断原则,可以计算出输出电压为-3.995V,与理论计算结果非常接近。 - **图 7.2**~**图 7.5**:展示了运算放大器在不同工作模式下的表现,包括求和电路和反向比例积分电路。 #### 八、直流稳压电源的仿真 直流稳压电源用于提供稳定的直流电压输出,适用于各种电子设备。 **图 8.1**:展示了直流稳压电源的基本配置,并在输出端接入负载R1。 - 通过测量输出电压,可以评估稳压电源的性能。 这些Multisim电路仿真图涵盖了从基础电路到高级电路的各种应用场景,为学习者提供了丰富的实践案例和理论验证的机会。通过这些仿真图,我们可以深入理解电路的基本原理以及它们在实际应用中的行为特点。
2025-12-14 09:43:43 3.83MB
1