ANSYS APDL与SIMPACK联合仿真的课程与实践资料集:车桥耦合振动分析模型详解,[1]包括simpack和ansys联合仿真的课程,和模型 ansys apdl和SIMPACK车桥耦合振动分析,资料包括: (1)120m连续钢混组合梁桥模型(实体单元+壳单元+梁单元+栓钉建模细节、支座建模细节、桥墩建模细节); (2)空间整车模型(均可考虑车体竖向,俯仰和侧倾振动加速度); (3)车桥耦合振动分析程序(可以修改车速,车重和路面不平整度); (4)结果提取可以提取桥梁任意节点位移时程曲线,加速度时程曲线,车辆多个方向动力响应。 [2]SIMPACK学习资料和视频 有基础培训视频 包括地铁车辆动力学建模计算,动力学分析,轮对,转向架车体建模,地铁轨道耦合动力学,激励添加,齿轮模型,碰撞模型,CAD文件导入等,实例模型PDF版 送SIMPACK2021x安装包 以及安装教程 ,simpack; ansys联合仿真; 模型; ansys apdl; 车桥耦合振动分析; 连续钢混组合梁桥模型; 空间整车模型; 振动加速度; 结果提取; 节点位移时程曲线; 地铁车辆动力学建模计算
2025-09-23 15:57:31 2.11MB edge
1
鉴于国内无人机上行链路普遍采用跳频传输的现状,可认为干扰无人机上行链路的本质在于干扰跳频通信。跳频通信的干扰方法主要有跟踪干扰、阻塞干扰和同步系统的干扰三类。所以在跳频通信的基础上研究了无干扰系统、阻塞干扰系统、多音干扰系统,不同干扰对跳频通信的影响。该资源是基于matlab来对跳频系统进行仿真,并包含编码、调制、无线信道建模、解调、解码,最后绘制信噪比误码率图。
2025-09-23 10:34:25 16KB matlab 无线通信 跳频通信
1
基于CST仿真超表面技术的全息成像与圆极化复用研究:GS算法的matlab代码与全程教学应用,cst仿真超表面 fdtd仿真 全息成像 圆极化复用全息成像 cst仿真全息成像,GS算法,matlab代码,全程教学 ,核心关键词: cst仿真超表面; fdtd仿真; 全息成像; 圆极化复用; GS算法; matlab代码; 全程教学 (以上关键词用分号分隔),"超表面CST仿真与全息成像技术研究,采用FDTD及GS算法教学Matlab编程" 在当今科技高速发展的背景下,全息成像技术作为光学信息处理领域的一项重要技术,已经在许多领域中得到应用,如医疗成像、信息安全、虚拟现实等。全息成像技术的核心在于通过精确的波前控制与相位编码实现三维图像的再现。在这一过程中,超表面技术的引入,为全息成像技术的发展带来了新的可能性。 超表面是一类具有特定物理特性的超薄材料结构,通过精细设计其表面结构,可以实现对入射光的精确操控,包括折射、反射、衍射等,进而实现复杂的波前转换。CST仿真软件是模拟电磁场特性的重要工具,其可以在虚拟环境中对超表面的设计进行仿真分析,以优化全息成像系统的性能。而FDTD(时域有限差分法)仿真则是一种数值分析方法,用于计算电磁场随时间变化的分布情况,这一方法在超表面与全息成像技术的研究中同样占据着举足轻重的地位。 圆极化复用是另一种提升全息成像技术性能的方法,通过编码与解码不同的圆极化状态,可以实现多个全息图像的同时复用与分离,这对于提升信息存储密度和传输效率具有重要意义。GS算法(Gerchberg-Saxton算法)是一种迭代算法,主要用于波前校正,它能够在全息成像系统中通过迭代计算提高成像质量。 本文档集主要探讨了基于CST仿真的超表面技术与全息成像技术,以及圆极化复用的应用。文档不仅提供了GS算法的matlab代码实现,而且还包括了从仿真到实际应用的全程教学内容,旨在帮助读者理解并掌握相关理论和技术。这些内容对于希望深入研究超表面与全息成像技术的科研人员和工程师来说,是一个宝贵的参考资料。 文档名称如“探索仿真超表面与全息成像基于仿真与圆极化”和“仿真超表面及其在全息成像与圆极化复用中的应用与”等,揭示了文档内容不仅涵盖超表面技术的仿真分析,还包括其在全息成像与圆极化复用领域的应用探讨。此外,包含“过调制统一实现仿真及代码介绍过调制.html”与“仿真超表面仿真全息成像圆极化复用全息成像仿真.html”的文档,说明了仿真技术在实现这些复杂算法中的重要作用。 通过这些文档,读者可以系统地学习到超表面技术在全息成像中的应用原理、仿真技术、圆极化复用技术以及GS算法的matlab代码实现。这些知识不仅可以提升理论研究的深度,而且对于实际应用的开发具有重要的指导意义。无论是在学术领域还是在工业界,这类研究都有望推动全息成像技术向着更高精度、更高效率的方向发展。
2025-09-23 09:39:06 701KB xhtml
1
利用COMSOL软件对光纤FP(Fabry-Pérot)干涉仪进行建模的方法及其光谱特性分析。首先阐述了光纤FP干涉仪的基本原理,包括光在两个反射面之间的干涉现象及其数学表达式。接着,重点讲解了在COMSOL环境中如何定义物理场、几何结构、材料属性和边界条件,从而建立完整的干涉光谱模型。最后,展示了通过模拟获得的干涉光谱图,并讨论了不同参数变化对光谱的影响。 适合人群:从事光学工程、光电子学领域的研究人员和技术人员,尤其是那些希望深入了解光纤FP干涉仪工作原理并掌握COMSOL建模技能的人群。 使用场景及目标:适用于需要对光纤FP干涉仪进行理论研究或实际应用开发的场合,如提高光纤传感器的测量精度、优化光通信系统的滤波器性能等。通过对该模型的学习和应用,可以更好地理解和预测光纤FP干涉仪的行为。 其他说明:文中提供了部分MATLAB风格的伪代码片段,用以辅助解释COMSOL建模的关键步骤。此外,还强调了不同参数(如干涉仪长度、材料折射率)对干涉光谱的具体影响。
2025-09-23 09:35:57 868KB COMSOL 光学仿真
1
Simpack软件联合Ansys与Abqus进行车桥耦合及地震波浪荷载仿真分析全教程模型,simpack软件与ansys,abqus联合仿真求解车桥耦合,地震波浪荷载联合仿真分析,全教程模型。 1. abaqus-simpack车轨耦合振动分析 2. abaqus-simpack车轨桥耦合振动分析 3. ansys-simpack车轨桥耦合振动 4. 车桥耦合叠加地震波浪荷载 ,simpack;abqus-车轨耦合振动;ansys-地震波浪荷载联合仿真;全教程模型,Simpack联合Abaqus与Ansys进行车桥耦合振动及地震波浪荷载全教程模型
2025-09-22 15:36:15 114KB
1
OpenEaagles是一个强大的飞行器分布式仿真框架,专为模拟和测试飞行系统设计。它以其易用性和全面的功能集而著称,涵盖了系统仿真、自动驾驶、导航算法以及传感器模拟等多个关键领域。这个框架允许工程师和研究人员在安全的环境下对飞行器的各种功能进行测试和优化,而无需实际飞行。 一、系统仿真 OpenEaagles的核心在于其系统仿真能力,它可以模拟整个飞行器的硬件和软件组件,包括发动机控制、飞行管理系统、电气系统等。用户可以通过定制的模型来模拟不同类型的飞行器,无论是固定翼飞机还是旋翼无人机,都可以在此框架下进行精确的仿真。 二、自动驾驶仿真 在自动驾驶领域,OpenEaagles提供了详尽的自动驾驶算法仿真支持。这包括但不限于路径规划、避障策略、自动着陆和起飞等。用户可以测试和比较不同的自动驾驶策略,评估它们在各种飞行条件下的性能。 三、导航算法 OpenEaagles内置了多种导航算法,如GPS、惯性导航系统(INS)、地磁导航、视觉定位等。用户可以在此平台上开发和验证新的导航算法,或者对现有的导航系统进行优化。此外,它还支持实时数据注入,使仿真更加接近实际环境。 四、传感器仿真 传感器是飞行器感知环境的关键部分。OpenEaagles支持多种传感器的仿真,如雷达、激光雷达(LiDAR)、光学流传感器、摄像头等。通过这些仿真,开发者可以测试传感器的性能,以及它们与飞行器其他系统的集成效果。 五、分布式仿真 OpenEaagles的一大优势在于其分布式架构。这使得多个仿真实例可以在网络上同时运行,模拟多架飞行器的协同或对抗情况。这对于研究复杂空域管理问题、无人机集群行为或者多机通信至关重要。 六、易用性与灵活性 OpenEaagles的用户界面设计简洁,易于上手。同时,它的开放源代码性质允许用户根据需求进行二次开发,添加自定义模块,或者调整现有模型以适应特定项目。 OpenEaagles是一个全面且灵活的飞行仿真工具,无论是在学术研究还是工业应用中,都能为飞行器开发和测试提供强大的支持。通过这个框架,用户能够高效地验证飞行控制策略,优化系统性能,并在复杂环境下进行安全可靠的模拟实验。
2025-09-22 15:05:11 1.63MB 飞行仿真
1
SDRAM(Synchronous Dynamic Random-Access Memory)是同步动态随机存取存储器,它在现代电子设备中扮演着至关重要的角色,特别是在FPGA(Field-Programmable Gate Array)设计中。FPGA是一种可编程逻辑器件,允许用户自定义硬件电路以实现特定的功能。在FPGA设计中,SDRAM控制器是必不可少的部分,它负责管理和控制与外部SDRAM芯片的通信。 该资源提供了带中文注释的SDRAM控制器源码,这对于理解和学习SDRAM控制器的工作原理非常有帮助。源码通常使用硬件描述语言如Verilog编写,Verilog是一种广泛使用的语言,用于数字电路的建模和设计。 我们要理解SDRAM控制器的基本功能。它主要负责以下任务: 1. **时序控制**:SDRAM的操作需要严格的时序,控制器必须生成合适的地址、数据和控制信号,以确保与SDRAM的同步通信。这包括时钟信号(CKE、CLK)、命令信号(RAS、CAS、WE)以及预充电、行激活等操作。 2. **刷新管理**:SDRAM需要定期刷新以保持数据完整性,控制器必须定时发送刷新命令并管理刷新计数器。 3. **数据读写**:控制器接收CPU或其它系统组件的数据请求,将数据传输到SDRAM,或者从SDRAM读取数据并返回给请求者。 4. **地址映射**:控制器将CPU的虚拟地址转换为SDRAM的实际物理地址。 5. **错误检测和校正**:虽然这不是所有控制器必备的功能,但一些高级控制器可能包含ECC(Error Correction Code)机制,用于检测和纠正数据传输中的错误。 现在,考虑到这个源码带有中文注释,这对于初学者来说是一大福音。注释会解释每个模块和代码段的作用,使得理解更直观,学习曲线更平缓。例如,你可能会看到关于时钟分频器(用于生成SDRAM所需的精确时钟)、地址解码器(将总线地址转换为SDRAM地址)和数据缓冲区(用于数据传输同步)的注释。 在仿真方面,这通常意味着你可以使用像ModelSim或Vivado这样的工具来验证代码的功能是否正确。你可以设置不同的输入条件,观察输出结果,检查SDRAM控制器是否按预期工作。 在线调试则意味着可能提供了一种方式,可以在实际FPGA上实时查看和修改控制器的行为,这对于优化性能和解决硬件问题至关重要。 在使用这个源码时,你应该先理解基本的SDRAM工作原理,然后逐步研究源码,通过仿真验证其功能。一旦理解了代码,你可以根据实际需求对其进行修改,例如增加支持更大容量的SDRAM,或者优化其性能以满足高速数据处理的需求。 这个资源对于想要深入学习FPGA设计,尤其是SDRAM控制器实现的工程师或学生来说,是一份宝贵的资料。通过实践和调试,你可以提升自己的硬件设计技能,并且更好地掌握Verilog编程。
2025-09-22 11:18:11 4.69MB FPGA SDRAM verilog
1
"超表面CST仿真秘籍:从入门到精通的科研之旅,多年经验集大成,快速进入科研状态之利器",超表面 CST仿真 指导新人快速进入科研状态,事半功倍 多年研究经验,成果多多,实力在线 已指导150+位需求者 经验形成完整的视频,文档,代码,案例。 内容涉及超表面各种应用,透镜,轨道角动量等。 ,物有所值,后有保障 ,超表面; CST仿真; 快速科研; 多年研究经验; 指导需求者; 经验视频; 文档代码; 案例应用; 透镜; 轨道角动量。,超表面CST仿真科研培训:专家经验助你事半功倍 在现代科技领域中,超表面技术作为一种前沿研究方向,对光电、材料科学以及信号处理等众多领域产生了深远的影响。伴随着计算机技术的飞速发展,仿真技术在超表面研究中扮演了不可或缺的角色。CST仿真软件因其强大的电磁场模拟功能,成为了研究者们在设计与分析超表面结构时的得力工具。本书《超表面CST仿真秘籍:从入门到精通的科研之旅》是一部专门针对这一技术领域的实践指导书籍。 本书旨在帮助科研新手快速掌握超表面CST仿真的核心技巧,缩短科研探索的起跑时间,迅速融入科研工作的前沿。书中的内容不仅是作者多年研究经验的结晶,同时也是一系列成功指导过150多位研究者的实际案例的汇总。此书的特点是理论与实践相结合,通过视频、文档、代码和案例的全面形式,深入浅出地向读者展示了如何有效地利用CST软件进行超表面的设计与仿真。 书中所涵盖的知识面广泛,从基础概念到高级应用,内容丰富。它不仅包含了对超表面基本理论的介绍,也涉及了诸如透镜效应、轨道角动量等高端应用的详细讲解。在基础理论部分,读者可以了解到超表面的定义、分类以及工作原理等基础知识。而在高级应用部分,书中的内容则逐步深入,例如通过特定案例展示了如何设计具有透镜功能的超表面结构,以及如何利用超表面产生和控制轨道角动量。 更值得一提的是,本书对于超表面CST仿真中遇到的常见问题也提供了相应的解决方案。通过对真实案例的分析,研究者可以了解到如何在仿真实验中避免常见的错误,并在遇到仿真困难时,能够快速找到问题的症结所在,并作出相应的调整。 此外,为了更好地适应不同研究者的个性化需求,作者还根据多年的经验总结出了一套高效学习CST仿真的方法论。这些方法论不仅能够帮助初学者迅速上手,同样也能够帮助经验丰富的研究者进一步提升仿真的精度和效率。 《超表面CST仿真秘籍:从入门到精通的科研之旅》是一本集多年研究经验之大成,专为超表面CST仿真研究者量身打造的实践教程。它不仅能够指导科研新手快速进入科研状态,还能够帮助经验丰富的研究者进一步提升研究水平。通过本书的学习,读者可以获取宝贵的知识和技巧,加速科研工作进程,从而在超表面技术的研究中取得更多成果。
2025-09-21 21:53:54 844KB
1
基于Carsim和Simulink的变道联合仿真:融合路径规划算法与MPC轨迹跟踪,可视化规划轨迹适用于弯道道路与变道,CarSim与Simulink联合仿真实现变道:路径规划算法+MPC轨迹跟踪算法的可视化应用,适用于弯道道路与变道功能,基于Carsim2020.0与Matlab2017b,carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 带规划轨迹可视化 可以适用于弯道道路,弯道车道保持,弯道变道 Carsim2020.0 Matlab2017b ,carsim;simulink联合仿真;变道;路径规划算法;mpc轨迹跟踪算法;轨迹可视化;弯道道路;弯道车道保持;Carsim2020.0;Matlab2017b,CarSim联合Simulink实现弯道轨迹规划与变道模拟研究
2025-09-21 14:50:31 1013KB
1
Carsim与Simulink联合仿真实现变道路径规划算法与MPC轨迹跟踪算法的可视化应用,适用于弯道道路的智能驾驶仿真。,carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 带规划轨迹可视化 可以适用于弯道道路,弯道车道保持,弯道变道 Carsim2020.0 Matlab2017b ,关键词:Carsim; Simulink; 联合仿真; 变道; 路径规划算法; MPC轨迹跟踪算法; 规划轨迹可视化; 弯道道路; 弯道车道保持; 弯道变道; CarSim2020.0; Matlab2017b。,CarSim联合Simulink实现弯道轨迹规划与变道模拟研究
2025-09-21 14:49:33 214KB rpc
1