使用高级的图像日志工具,可以很容易地利用某些操作技术(如复制复制、对象拼接和删除)改变图像的语义,这些技术会误导观看者。相比之下,识别这些操作是一个非常具有挑战性的任务,因为被操作的区域在视觉上并不明显。本文提出了一种利用重采样特征、LSTM (Long-Short - Term Memory)单元和编码器-解码器网络分割操作区域和非操作区域的高置信度操作定位体系结构。重采样特性用于捕获JPEG质量损失、上采样、下采样、旋转和剪切等工件。该网络利用更大的接收域(空间图)和频域相关,结合编码器和LSTM网络分析操纵区域和非操纵区域之间的区别特征。最后,解码器网络学习从低分辨率特征映射到像素预测图像篡改定位。 利用所提出体系结构的最后一层(softmax)提供的预测掩码,通过地面真相掩码的反向传播进行端到端训练来学习网络参数。此外,还引入了一个大的图像拼接数据集来指导训练过程。该方法能够在像素级实现高精度的图像处理,并在三种不同的数据集上进行了严格的实验。 索引术语-图像伪造,篡改定位,分割,重采样,LSTM, CNN,编码器,解码器
2022-02-21 09:08:08 37.39MB lstm 人工智能 rnn 深度学习
包含深度学习基本原理、网络搭建、优化方案、CNN、RNN网络的所有基本知识,适合新手小白进行知识梳理。
2022-02-17 09:11:58 5.7MB 深度学习 网络 cnn rnn
1
PSO-LSTM Matlab源码,含数据,稳定运行
2022-02-15 21:06:07 25KB lstm matlab 人工智能 rnn
Tensorflow RNN 关于mnist 的代码示例-附件资源
2022-02-09 09:28:55 106B
1
以MNIST手写数字识别任务为例,使用FPGA搭建了一个LSTM网络加速器,并选取MNIST数据集中的10张图片,通过vivado软件进行仿真验证。实验结果表明,本文设计的基于FPGA的LSTM网络加速器可以完成图片分类任务,其准确率为90%(10张图片,1张分类错误),详细的介绍见我博客。
2022-02-03 09:01:58 292.89MB fpga开发 lstm 人工智能 rnn
1
* 前馈神经网络 [FFNN.ipynb] (models / FFNN.ipynb) * 简单移动平均线 [SMA.ipynb](模型 / SMA.ipynb) * 加权移动平均线 [WMA.ipynb] (models / WMA.ipynb) * 简单指数平滑 [SES.ipynb] (models / SES.ipynb) * Holts Winters [HW.ipynb](型号 / HW.ipynb) * 自回归综合移动平均线 [ARIMA.ipynb] (models / ARIMA.ipynb) * 循环神经网络 [RNN.ipynb](模型/RNN.ipynb) * 长短期记忆单元 [LSTM.ipynb] (models / LSTM.ipynb) * 门控循环单元格 [GRU.ipynb] (models / GRU.ipynb) 短期电力负荷预测研究生项目中,数据取自德里国家负荷调度中心网站,在项目过程中实施了多种时间序列算法。
2022-01-30 09:15:35 7.68MB python 机器学习 电力负荷预测
脑电情绪识别 HSE计算机科学学生项目 作者:Soboleva Natalia和Glazkova Ekaterina 脑电信号的准确分类可以为医学研究提供解决方案,以在早期阶段检测异常脑部行为以对其进行威胁。 在这项研究中,我们从另一个角度来看这个任务-情绪识别。 我们设计了卷积神经网络和递归神经网络的联合,使用自动编码器来压缩数据的高维数。 当前项目包括EEG数据处理,并使用AutoEncoder + CNN + RNN进行卷积 前处理 伪影-这是所有非脑源记录的活动的术语。 伪影可分为两类:生理伪影(来自大脑其他部位的虹膜,例如,身体)和外部生理伪影(例如,技术设备的北极)。 为了提取脑电图观察的最重要特征,必须进行预处理。 为了进行数据处理和可视化, 选择了用于人类神经生理数据(包括EEG)的开源Python软件。 在这一领域,有两种主要的最新方法可以处理EEG信号:小波变换和
2022-01-17 14:22:58 3.3MB JupyterNotebook
1
最佳播放列表不仅仅是歌曲集 您是否曾经制作过播放列表或混音带,却无法按顺序放置歌曲? 也许我们可以从不同的Spotify用户那里学到什么才是一个好的播放列表。 最佳播放列表的流量很好。 考虑到他们具有相同的音轨和技术才能,这就是将好的DJ与坏的DJ分开的原因。 积累和分解会带来有趣的体验,而不仅仅是挑选与上一首最相似的歌曲。 解决方案 深度顺序内容优化或“ DISCO” 使用递归神经网络订购建议。 该项目的主要重点是基于内容的算法,该算法将位于协作过滤层的顶部。 关键概念 推荐系统 序列学习 递归神经网络 计算音乐理论 科技类 Spotify API 凯拉斯 密谋 目录-重点 pipeline.ipynb-这是一种在运行中具有完整转换和预测流水线以构建播放列表的算法。 /cloud/model.ipynb-RNN在Amazon SageMaker上进行了培训 /data-wrang
2022-01-10 10:57:11 7.16MB 系统开源
1
用LSTM写唐诗。使用tensorflow框架。代码是可以正常运行的代码,包含数据集。
2022-01-07 01:05:45 5.58MB nlp 深度学习 自然语言处理
1
基于paddle从头实现了单向,多层,双向LSTM,给出了完整使用代码,并与paddle自带的LSTM进行了对比实验。
2021-12-31 19:03:42 8.64MB paddlepaddle LSTM 自定义实现LSTM 深度学习