图神经网络是一种对没有固定结构的数据进行建模的诱人方法。然而,让他们按预期工作多年来经历了一些曲折。在本次演讲中,我将介绍图挖掘团队在谷歌上使GNN有用的工作。我将专注于我们已经发现的挑战以及我们为它们开发的解决方案。具体来说,我将重点介绍一些工作,这些工作实现了更富表现力的图卷积、更健壮的模型和更好的图结构。
2022-05-04 21:06:16 3.41MB 文档资料 神经网络 人工智能 深度学习
SIMATIC_S7_GRAPH_V5.3_SP7完整安装
2022-05-04 11:12:08 24.46MB SIMATIC S7 GRAPH_V5.3 SP7完整安装
1
基于原始分子图的神经网络属性预测 该代码是在阿斯利康进行的两项工作的基础: 我的硕士学位论文 Me和Michael Withnall的论文《 的中,本文提到的三个模型引用了以下代码和论文的模型: SELU-MPNN-> GGNN AMPNN-> AttentionGGNN GGNN EMNN-> EMN 论文的技术细节更为丰富,但并未经过同行评审,其中包含错误生成的ESOL数据集结果。 本文包含了更详尽,更仔细地生成的结果集。 相关工作 最重要的四篇相关论文是: 提供了一个图神经网络作为本工作以及以下论文的基线 定义了图表的神经网络的MPNN框架,在该代码实现为抽象类SummationMPNN 提供了一种用于节点分类的模型,该模型具有消息聚合步骤,该步骤不适合MPNN框架,但可以适合作为抽象AggregationMPNN类实现的更通用的框架,在计算上可以看作是较轻的变体。当前
2022-05-02 18:36:03 38KB Python
1
neo4j-graph-algorithms-3.5.0.1.zip图形数据库编码及应用,安装
2022-05-02 15:24:25 5.2MB 图形数据库 图数据库
1
摘要 生物医学数据收集的最新进展允许收集大量数据集,测量数千到数百万个单细胞中的数千个特征。这些数据有可能以以前不可能的分辨率推进我们对生物机制的理解。然而,了解这种规模和类型数据的方法很少。尽管神经网络在监督学习问题上取得了巨大进步,但要使它们对更难表示监督的数据中的发现成为有用,还有很多工作要做。神经网络的灵活性和表现力有时会成为这些监督较少的领域障碍,从生物医学数据中提取知识就是这种情况。在生物数据中更常见的一种先验知识以几何约束的形式出现。 在本文中,我们旨在利用这些几何知识来创建可扩展和可解释的模型来理解这些数据。将几何先验编码到神经网络和图模型中,使我们能够描述模型的解决方案,因为它们与图信号处理和最优传输领域相关。这些链接使我们能够理解和解释这种数据类型。我们将这项工作分为三个部分。第一个借用图信号处理的概念,通过约束和结构化架构来构建更具可解释性和性能的神经网络。第二个借鉴了最优传输理论,有效地进行异常检测和轨迹推断,并有理论保证。第三个研究如何比较基础流形上的分布,这可用于了解不同的扰动或条件之间的关系。为此,我们设计了一种基于联合细胞图上扩散的最佳传输的有效近似
2022-04-30 09:09:29 21.87MB 神经网络
1
impGraphcut 交互式分割算法的 AC/C++ 实现,来自原始论文的 Graph-cut: Boykov 等人,用于 ND 图像中对象的最佳边界和区域分割的交互式图形切割,ICCV 2001。 使用 OpenCV 库。 使用最大流量优化。 提出使用多个特征融合的改进方案。
2022-04-28 21:47:33 92KB C++
1
SIMATIC_S7_GRAPH_V56.exe格式;SIMATIC_S7_GRAPH_V56.exe格式;SIMATIC_S7_GRAPH_V56.exe格式
2022-04-26 09:01:34 40.84MB S7顺序编程包 SIMATIC GRAPH
1
graph classification
2022-04-25 20:31:24 560KB graph kernel
1
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
2022-04-25 19:17:32 1.05MB 研究论文
1