ngui资源插件 最新版本
2021-04-07 18:03:15 13.05MB ngui
1
5G NR _ the next generation wireless access technology-Academic Press (2018).pdf
2021-04-04 15:40:33 7.82MB 5g next generat 5G
1
语言:English 用个人仪表板替换新的选项卡屏幕。 您会在每个新标签上获得一个随机的未启动背景,并在其上使用Google任务,从而提高了工作效率! 【即将推出】Clockify集成(添加任务,工作日志等)【功能】使用Google Tasks API(使用OAuth 2.0)从未启动的任务列表中获取背景(焦点存储)(将数据保存到本地存储)添加快捷方式(Q-隐藏/显示待办事项列表, W,E-更改待办事项列表)【更新】2020.02.15。 修复键绑定2020.02.02。 添加Q,W,E热键2019.12.24。 上载第一个版本
2021-04-03 12:10:22 223KB 扩展程序
1
语言:English (United States) 向LinkedIn添加其他工具,包括连接消息预设和各个用户注释。 此扩展程序可帮助您通过便笺系统记住与个人有关的信息,该信息系统已同步到您的Google帐户,并且仅对您可见。 它还允许拥有易于访问的连接消息预设,并帮助您更快地与个人建立联系!
2021-04-03 12:10:13 111KB 扩展程序
1
KMP的java实现
2021-04-02 13:05:41 2KB java kmp 字符串匹配 优化后的next
1
Utilize this practical and easy-to-follow guide to modernize traditional enterprise data warehouse and business intelligence environments with next-generation big data technologies. Next-Generation Big Data takes a holistic approach, covering the most important aspects of modern enterprise big data. The book covers not only the main technology stack but also the next-generation tools and applications used for big data warehousing, data warehouse optimization, real-time and batch data ingestion and processing, real-time data visualization, big data governance, data wrangling, big data cloud deployments, and distributed in-memory big data computing. Finally, the book has an extensive and detailed coverage of big data case studies from Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard. What You’ll Learn Install Apache Kudu, Impala, and Spark to modernize enterprise data warehouse and business intelligence environments, complete with real-world, easy-to-follow examples, and practical advice Integrate HBase, Solr, Oracle, SQL Server, MySQL, Flume, Kafka, HDFS, and Amazon S3 with Apache Kudu, Impala, and Spark Use StreamSets, Talend, Pentaho, and CDAP for real-time and batch data ingestion and processing Utilize Trifacta, Alteryx, and Datameer for data wrangling and interactive data processing Turbocharge Spark with Alluxio, a distributed in-memory storage platform Deploy big data in the cloud using Cloudera Director Perform real-time data visualization and time series analysis using Zoomdata, Apache Kudu, Impala, and Spark Understand enterprise big data topics such as big data governance, metadata management, data lineage, impact analysis, and policy enforcement, and how to use Cloudera Navigator to perform common data governance tasks Implement big data use cases such as big data warehousing, data warehouse optimization, Internet of Things, real-time data ingestion and analytics, complex event processing, and scalable predictive
2021-04-01 23:50:42 20.1MB 下一代大数据 实践 英文版
1
文件管理,Windows系统
2021-04-01 17:02:02 86.17MB 办公软件
1
get-next-line
2021-03-30 17:06:26 4KB C
1
滴水算法概述 滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题。 引言 之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码。 我对上面的代码进行了一些小修改,同时升级为python3的代码。 还是以这张图片为例: 在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法。 首先使用之前文章中介绍的垂直投影或者连通域先进行一次切割处理,得到结果如下: 针对于最后粘连情况来使用滴水算法处
2021-03-26 20:12:45 72KB next python python算法
1
stripe_demo:包括checkout和payment_intents两种支付模式。next.js项目
2021-03-24 21:04:42 12KB stripe next.js
1