Keras 自注意力 [| ] 处理顺序数据的注意力机制,考虑了每个时间戳的上下文。 安装 pip install keras-self-attention 用法 基本的 默认情况下,注意力层使用附加注意力并在计算相关性时考虑整个上下文。 以下代码创建了一个注意力层,它遵循第一部分中的方程( attention_activation是e_{t, t'}的激活函数): import keras from keras_self_attention import SeqSelfAttention model = keras . models . Sequential () model . add ( keras . layers . Embedding ( input_dim = 10000 , output_dim =
2021-11-30 20:14:56 26KB keras attention-mechanism Python
1
递归神经网络模型用于纠错 该存储库提供了在描述的各种模型的源代码。 该项目旨在实现和评估神经网络模型,特别是递归神经网络(RNN),双向递归神经网络(BRNN),序列到序列(seq-to-seq)模型以及最终基于注意力的机制。序列到序列模型。 下图说明了预测给定不正确短语的正确形式的编码器-解码器模型。 DyNet库 在当前项目的实施中,我们一直在使用DyNet。 动态神经网络工具包或DyNet是一个神经网络库,适用于具有动态结构的网络。 DyNet支持在神经网络计算中使用的静态和动态声明策略。 在动态声明中,每个网络都是通过使用有向和无环计算图构建的,该图由定义模型的表达式和参数组成。 DyNet在CPU或GPU上有效工作,最近为许多NLP研究论文和项目提供了支持。 您可以找到有关DyNet的更多信息。 资料集 我们的方法与语言无关。 专门针对我们的项目,我们使用对模型进行了训练和评估,
1
Chinese NER Project 本项目为CLUENER2020任务baseline的代码实现,模型包括 BiLSTM-CRF BERT-base + X (softmax/CRF/BiLSTM+CRF) Roberta + X (softmax/CRF/BiLSTM+CRF) 本项目BERT-base-X部分的代码编写思路参考 。 项目说明参考知乎文章: Dataset 实验数据来自。这是一个中文细粒度命名实体识别数据集,是基于清华大学开源的文本分类数据集THUCNEWS,选出部分数据进行细粒度标注得到的。该数据集的训练集、验证集和测试集的大小分别为10748,1343,1345,平均句子长度37.4字,最长50字。由于测试集不直接提供,考虑到leaderboard上提交次数有限,本项目使用CLUENER2020的验证集作为模型表现评判的测试集。 CLUENER2020共有10个
2021-11-29 23:16:05 12.45MB pytorch named-entity-recognition ner bert
1
国科大自然语言处理第三次作业
2021-11-29 17:05:46 181.53MB TensorFlow nlp 命名实体识别
1
根据通用近似定理,前馈网络和循环网络都有很强的能力。但为什么还要引入注意力机制呢?计算能力的限制:当要记住很多“信息“,模型就要变得更复杂,然而目前计算能力依然是限制神经网络发展的瓶颈。 优化算法的限制:虽然局部连接、权重共享以及pooling等优化操作可以让神经网络变得简单一些,有效缓解模型复杂度和表达能力之间的矛盾;但是,如循环神经网络中的长距离以来问题,信息“记忆”能力并不高。 可以借助人脑处理信息过载的方式,例如Attention机制可以提高神经网络处理信息的能力。当用神
1
在脊椎CT图像分割问题中,由于脊椎与组织对比度过低和噪声的影响,传统分割算法存在分割精度差和自动化程度低等问题。基于此,提出一种通过AttentionNet定位脊椎,然后使用改进的DenseUnet进行脊椎CT分割的方法。首先,对所有脊椎CT样本数据进行裁剪、重采样、灰度值归一化等预处理操作;再次,对样本使用AttentionNet训练得到具有位置信息的Attention图;然后,对传统DenseUnet进行改进,在每个Dense block加入Shuffle操作来增加网络的鲁棒性,在每个Dense block后加入1×1卷积,以降低通道数,减少网络参数量;接着使用改进后的DenseUnet对训练样本进行预训练,得到具有先验信息的预测图;最后,将Attention图、预测图及原始图像融合为三通道的训练样本作为输入,采用改进的DenseUnet训练分割模型,并在测试集上进行验证,最终实现脊椎CT自动分割。实验结果表明,所提方法的分割精度优于传统DenseUnet,是一种有效的脊椎CT自动分割方法。
2021-11-28 16:04:19 8.11MB 图像处理 分割 Attention 参数量
1
Pytorch-Tutorial_Seq2Seq_Attention
2021-11-28 15:45:40 2.78MB Python
1
[PYTORCH]用于文档分类的分层注意网络 介绍 下面是我的文件分层关注网络的文档分类描述的模型的pytorch实现。 Dbpedia数据集模型输出结果的应用程序演示示例。 我的模型对Dbpedia数据集的性能示例。 如何使用我的代码 使用我的代码,您可以: 使用任何数据集训练模型 给定我训练有素的模型或您的模型,您可以评估具有相同类集的任何测试数据集 运行一个简单的Web应用进行测试 要求: python 3.6 火炬0.4 张量板 tensorboardX (如果不使用SummaryWriter,则可以跳过此库) 麻木 数据集: 我用于实验的数据集的统计信息。 这些数
2021-11-26 21:50:56 49.66MB python nlp deep-neural-networks deep-learning
1
简历中的令人敬畏的关注机制 目录 介绍 PyTorch实现多种计算机视觉中网络设计中用到的注意机制,还收集了一些即插即用模块。由于能力有限的能力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交问题或者进行PR。 注意机制 纸 发布 关联 大意 博客 CVPR19 将高阶和关注机制在网络中部地方结合起来 CVPR20 NAS + LightNL CVPR18 最经典的通道专注 CVPR19 SE +动态选择 ECCV18 串联空间+通道注意力 BMVC18 平行空间+通道关注 微创18 平行空间+通道关注 CVPR19 自我注意 ICCVW19 对NL进行改进 ICCV19 对NL改进 ICASSP 21 SGE +渠道洗牌 CVPR20 SE的改进 19号 群组+空间+频道 20倍 频域上的SE操作 NeurIPS18 NL的思想应用到空间和通道 ICCV19 s
1
5个程序员刷题网站| 凯拉斯-伯特-纳 中文 NER 任务使用BiLSTM-CRF/BiGRU-CRF/IDCNN-CRF模型和预训练语言模型的Keras解决方案:支持BERT/RoBERTa/ALBERT )。 更新日志 2020年2月27日重构的代码keras_bert_ner并删除了一些多余的文件。 bert4keras == 0.2.5现在已集成为该项目的主要部分。 2019.11.14 bert4keras现在作为一个包使用,因为它没有太大变化。 albert 模型现在只能支持谷歌的版本。 2019.11.04修复计算句子准确率和做预测时结果错误的问题。 2019.11.01将keras-contrib crf_accuracy/ crf_loss替换为自定义的 crf_accuracy/crf_loss 来处理掩码标签。 未来的工作 迁移到 tensorflow 2.0。 添加其他 BERT 模型,例如 Distill_Bert、Tiny_Bert。 依赖关系 烧瓶== 1.1.1 keras == 2.3.1 numpy == 1.18.1 loguru == 0.4.1
2021-11-24 11:14:06 10.6MB 系统开源
1