目前多数PM2.5浓度预测模型仅利用单个站点的时间序列数据进行浓度预测, 并没有考虑到空气质量监测站之间的区域关联性, 这会导致预测存在一定的片面性. 本文利用KNN算法选择目标站点所在区域中与其相关的空间因素, 并结合LSTM模型, 提出基于时空特征的KNN-LSTM的PM2.5浓度预测模型. 以哈尔滨市10个空气质量监测站的污染物数据进行仿真实验, 并将KNN-LSTM模型与其他预测模型进行对比, 结果显示: 模型相较于BP神经网络模型平均绝对误差(MAE)、均方根误差(RMSE)分别降低了19.25%、13.23%; 相较于LSTM模型MAE、RMSE分别降低了4.29%、6.99%. 表明本文所提KNN-LSTM模型能有效提高LSTM模型的预测精度.
1