目录 注意:如有问题,请先参阅问题管理! 介绍 该项目旨在提供一个简单方便的界面,依靠Contiki OS生成Cooja模拟并为无线传感器网络(WSN)部署恶意节点,该传感器使用针对低功率和有损设备(RPL) ( RFC 6550 )的路由协议网络层。 使用此框架,可以重新定义RPL配置常量,修改ContikiRPL库中的单行或使用自己的外部RPL库来轻松定义仿真活动(以JSON格式)。 而且,可以针对每个模拟基于相同或随机的拓扑来生成活动中的实验。 使用该框架进行的一些测试案例: 测试案例1:泛洪攻击 恶意微粒的范围为3、7、10 没有恶意微粒的电源跟踪 使用恶意微粒进行功率跟踪 测试案例2:版本控制攻击 合法的DODAG 实施版本控制攻击(全局修复) 没有恶意微粒的电源跟踪 使用恶意微粒进行功率跟踪 测试案例3a:黑洞攻击 合法的DODAG 黑洞攻击行动
2021-10-02 16:37:08 4.78MB attack simulation wireless-network wsn
1
无线传感器网络LEACH算法与DEEC算法的仿真与比较
2021-09-28 18:08:37 34KB WSN 传感器 WSN算法 WSNmatlab
WSN定位算法DV—HOP的仿真代码,使用matlab编写,适合初学者仿真使用,很有帮助。
2021-09-26 09:09:02 2KB wsn
1
本文介绍了无线传感器网络中常用的几种操作系统,并从不同方面对其做了比较。
2021-09-25 23:10:28 1.02MB 无线传感网 WSN 操作系统 比较
1
第七章 实例(无线传感器网络移动节点定位仿真)································ ····179 概述····································································································································································· 179 7.1 移动定位算法介绍··································································································································· 179 7.1.1 室内移动节点定位算法································ ································ ································ ········ 179 7.1.1.1 Active Badge 系统································ ································ ································ ··········· 180 7.1.1.2 RADAR 系统································ ································ ································ ··················· 180 7.1.1.3 Cricket 系统································ ································ ································ ····················· 180 7.1.2 室外移动节点定位算法································ ································ ································ ········ 181 7.1.2.1 基于静态定位的移动定位算法 ································ ································ ····················· 181 7.1.2.2 纯移动定位算法································ ································ ································ ············· 182 7.2 移动定位算法的 OMNeT++仿真········································································································· 183 7.2.1 MCL(Monte Carlo Localization)定位算法简介 ································ ······························· 183 7.2.2 MCL(Monte Carlo Localization)的 OMNeT++仿真································ ························ 185 7.2.2.1 建立网络拓扑································ ································ ································ ················· 185 7.2.2.2 编码阶段································ ································ ································ ························· 190 7.3.总结和发展趋势·························································
2021-09-24 16:13:20 2.19MB omnet++ WSN 无线传感器网络 仿真
1
无线传感器网络(wSN,Wireless Sensor Networks)是由大量廉价、低功耗、多功能无线节点组成。无线传感器网络在医疗、军事、环境监测及其他民用领域有着广泛的应用。本论文是在对当前无线传感器网络节点的现状及实现方法进行研究的基础上,结合实际课题需求,设计实现了一种新的基于嵌入式DSP平台的高性能WSN节点射频通信模块。   本文的具体工作如下:   1,概述了目前无线传感器网络的研究状况、特征、关键技术、难点以及应用。然后针对实际课题的需求,给出了基于高性能DSP平台的无线传感器网络节点的设计方案,并简要说明了WSN节点的硬件的各个组成部分.   2,对实际设计中应用到的相关参数进行了理论分析和计算。主要包括射频电路中的阻抗匹配网络的分析:PCB板中微带线宽度的设计和仿真;实际应用中传输距离的射频通信模块发射功率的计算;收发选择开关的隔离度和插入损耗的计算。   3,对无线传感器网络大功率射频通信模块进行了深刻的研究。详细论述了大功率射频通信模块硬件和软件的设计。并详细说明系统的实现,涉及到硬件电路的设计和调试方法。   最后对所实现的系统进行了室内外的测试。测试结果证明,本论文所设计的无线传感器网络大功率射频通信模块达到了实际应用的要求。
2021-09-23 17:38:56 688KB 无线传感器网络射频通信
1
matlab +无线传感器代码使用萤火虫算法的无线传感器网络(WSN)部署 代码说明 FA.m :主要功能 init_ffa.m :初始化萤火虫的位置 ffa_wsn.m :使用萤火虫算法实现WSN的部署 ffa_move.m :更新解决方案(部署WSN) coverage.m :计算WSN的覆盖范围 findlimits.m :确保萤火虫在界限/界限内 draw.m :用于数据可视化的漂亮代码 运行代码 直接在Matlab或Octave中运行FA.m
2021-09-23 08:44:29 53KB 系统开源
1
WSN布局】基于改进粒子群算法实现WSN节点优化部署matlab源码
2021-09-19 16:52:22 12KB
1
基于WSN技术的智能电网通信系统建设研究.pdf
基于WSN的精准养牛业智能决策支持系统设计.pdf