大家好,今天给大家带来一个卷积神经网络(CNN)数学图形识别项目(简单入门版),这个是人工智能解题的基础,机器首先通过题目识别出题目中的文字和图形,读懂题目的含义,这个是个相对复杂的过程。就在今年的1月4日,麻省理工学院等四所高校的联合研究团队,发布了一项最新研究成果:他们开发了一个神经网络,可以解答出微积分、线性代数等大学数学题。不管是要求计算数值,还是写方程式,或者画出函数图形,都能轻易解答,正确率达到了100%。要知道,在短短几个月前,人工智能解答类似的题,最高正确率不到10%。
2022-12-20 15:27:49 5.96MB CNN 图像分类
1
graph-rcnn.pytorch 我们的ECCV 2018论文Pytorch代码 介绍 该项目是一组基于Pytorch 1.0的重新实现的代表性场景图生成模型,包括: 我们自己的 。 ECCV 2018。 Xu等人。 CVPR 2017 ,Li等。 ICCV 2017 ,Zellers等。 CVPR 2018 ,Zhang等,CVPR 2019 我们的重新实现基于以下存储库: 为什么我们需要这个存储库? 将所有这些代表性方法收集到一个回购中的目的是在相同设置下跨不同方法建立更公平的比较。 您可能会在最近的文献中注意到,IMP,MSDN,Graph R-CNN和神经母题的报告数量通常令人困惑,尤其是由于IMP样式方法(前三种)和神经母题风格的方法(神经母题)之间存在较大差距纸和其他基于它的变体) 。 我们希望该仓库可以为各种场景图生成方法建立良好的基准,并为研究界做出贡献
2022-12-19 19:53:03 666KB Python
1
基于CNN和SVM的设备审查实现
2022-12-19 17:00:35 200.52MB cnn svm 网络安全审查 设备安全检测
基于词向量和cnn的恶意邮件检测防钓鱼
2022-12-19 17:00:34 59.46MB 词向量 cnn 恶意邮件检测 防钓鱼检测
基于机器学习和深度学习的项目,内含数据集以及详细的备注源码
2022-12-18 14:27:51 3KB 机器学习 深度学习
卷积核可视化 import matplotlib.pyplot as plt import numpy as np from keras import backend as K from keras.models import load_model # 将浮点图像转换成有效图像 def deprocess_image(x): # 对张量进行规范化 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 x += 0.5 x = np.clip(x, 0, 1) # 转化到RGB数组 x *= 255 x = np.clip(x, 0, 25
2022-12-17 21:13:50 248KB AS keras ras
1
Girshick - 2015 - Fast r-cnn.pdfGirshick - 2015
2022-12-17 20:46:52 714KB rcnn
1
使用CNN完成MNIST手写体识别(pytorch).py
2022-12-14 16:26:57 4KB CNN 手写体识别
1
基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能课程作业 手写数字识别 数据集 详细注释 好理解 实验结果及总结 基于python实现的CNN卷积神经网络手写数字识别实验源码+详细注释+数据集+项目说明+实验结果及总结.7z
统计学期末课程作业_python自定义实现CNN_KNN_NN_SVM网络模型源码+说明文件.zip 【CNN实现】 cnn1.py: LeNet+ReLU; cnn2.py: 在cnn1的基础上加宽全连接层; cnn3.py: 在cnn2的基础上修改卷积核; cnn4.py: 在cnn3的基础上修改卷积核; cnn5.py: 在cnn4的基础上加宽全连接层; cnn6.py: 在cnn3的基础上加宽全连接层; cnn7.py: 在cnn6的基础上加宽全连接层; cnn8.py: 在cnn6的基础上加入Dropout层; 等等 【KNN实现】 knn.py: 标准KNN,k=1,3,5,7,9; 【NN实现】 nn1.py: 784-800-15 (修改激活函数); nn2.py: 784-2500-2000-1500-1000-500-15 (修改激活函数); nn3.py: 在nn2的基础上修改数据预处理方式; 【SVM】 svm.py: 核函数(linear,rbf,poly,sigmoid); 另包含【运行指南】和【最终选择模型】
2022-12-14 16:26:40 509.6MB CNN KNN NN SVM