keras预测房价demo,包含数据集及jupyter代码
2022-06-10 18:07:32 53KB keras
1
内容 如此处所述,通过层归一化扩展标准keras LSTM和GRU层。 用法示例 这些图层可以像普通图层一样容易使用: from LayerNormalizationRNN import LSTM , GRU inputs = Input ( shape = ( maxlen ,)) x = Embedding ( max_features , 128 )( inputs ) x = LSTM ( 64 , layer_to_normalize = ( "input" , "output" , "recurrent" ), normalize_seperately = True )( x ) # x = GRU(64, layer_to_normalize=("input_gate", "input_recurrent", "recurrent_gate", "recurrent_rec
2022-06-10 16:30:10 63KB Python
1
新闻分类keras代码reuters.ipynb
2022-06-07 18:10:05 156KB 分类 keras 文档资料 数据挖掘
1
age-gender-estimation, 用于年龄和性别估计的CNN网络的Keras实现 年龄和性别估计这是CNN的一个Keras实现,用于估计来自一个人脸图像 [1, 2 ]的年龄和性别。 在培训中,使用数据集 。[ jul 。5,2018 ],UTKFace数据集可以用于训练。添加了AppA真实数据集的[ apr 。
2022-06-07 00:01:52 864KB 开源
1
越来越多的人工智能解决方案将深度学习作为其基本技术,然而构建深度学习模型并不是一件容易的事,为了获得满意的准确性和效率,通常需要数周的时间优化模型。 本下载源码为博客文章 https://blog.csdn.net/shichaog/article/details/125128321 配套资源,从网络结构本身和训练参数两个层级两个方面实例分析优化的过程和手段
2022-06-06 19:10:40 4KB 深度学习 综合资源 人工智能
使用keras-bert实现 谭松波 酒店评论 文本分类(情感分析)-附件资源
2022-06-06 17:00:10 106B
1
cnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-ma
2022-06-02 11:05:01 501KB cnn keras 文档资料 python
给大家分享一套课程——Keras深度学习入门与实战,完整版,提供源码、课件、数据。 本课程介绍深度学习和神经网络的概念,并使用keras框架带领同学们构建各种各样的机器学习网络和深度学习网络,非常适合入门学习。 希望对大家学习有帮助。
2022-05-30 12:05:45 449B 深度学习 keras 人工智能 python
1
医疗图像分类,深度学习图像分类算法,带前后端,一个完整的癌症识别项目,keras框架+flask vue
2022-05-30 12:05:44 209.56MB 图像分类 深度学习 医疗图像分类
状态:存档(代码按原样提供,预计无更新) 伯特·凯拉斯 Google BERT(来自Transformers的双向编码器表示)的Keras实现和OpenAI的Transformer LM能够使用微调API加载预训练的模型。 更新:得益于 TPU支持进行推理和训练 如何使用它? # this is a pseudo code you can read an actual working example in tutorial.ipynb or the colab notebook text_encoder = MyTextEncoder ( ** my_text_encoder_params ) # you create a text encoder (sentence piece and openai's bpe are included) lm_generator = lm_generator ( text_encoder , ** lm_generator_params ) # this is essentially your data reader (single sente
2022-05-28 20:02:02 43KB nlp theano tensorflow keras
1