In the early days of computer science, the interactions of hardware, software, compilers, and operating system were simple enough to allow students to see an overall picture of how computers worked. With the increasing complexity of computer technology and the resulting specialization of knowledge, such clarity is often lost. Unlike other texts that cover only one aspect of the field, The Elements of Computing Systems gives students an integrated and rigorous picture of applied computer science, as its comes to play in the construction of a simple yet powerful computer system. Indeed, the best way to understand how computers work is to build one from scratch, and this textbook leads students through twelve chapters and projects that gradually build a basic hardware platform and a modern software hierarchy from the ground up. In the process, the students gain hands-on knowledge of hardware architecture, operating systems, programming languages, compilers, data structures, algorithms, and software engineering. Using this constructive approach, the book exposes a significant body of computer science knowledge and demonstrates how theoretical and applied techniques taught in other courses fit into the overall picture. Designed to support one- or two-semester courses, the book is based on an abstraction-implementation paradigm; each chapter presents a key hardware or software abstraction, a proposed implementation that makes it concrete, and an actual project. The emerging computer system can be built by following the chapters, although this is only one option, since the projects are self-contained and can be done or skipped in any order. All the computer science knowledge necessary for completing the projects is embedded in the book, the only pre-requisite being a programming experience. The book's web site provides all tools and materials necessary to build all the hardware and software systems described in the text, including two hundred test programs for the twelve projects. The projects and systems can be modified to meet various teaching needs, and all the supplied software is open-source.
2022-03-01 15:04:10 6.9MB Operating Sy
1
MESA是国际生产制造协会的简称,他们致力于将生产制造企业和信息化解决方案联系起来
2022-03-01 09:27:53 648KB MESA MES 智慧制造
1
本书重新审查了理论计算机科学,提供了一种新的方法,该方法将资源折衷和复杂性分类的优先级放在机器的结构及其与语言的关系上。
2022-02-27 23:38:52 92B 计算机科学
1
嵌入式开发最好的参考书。以pic32为例子,详细介绍各种技术
2022-02-26 21:36:59 26.4MB 嵌入式
1
Kincaid_Cheney_Numerical_Mathematics_and_Computing__Sixth_Edition
2022-02-24 14:21:57 5.32MB numerical mathematics
1
HCIA-Intelligent Computing V1.0 培训教材和实验手册
2022-02-21 14:19:33 15.39MB HCIA
中国移动边缘计算技术体系白皮书英文版:China Mobile Edge Computing Technical White Paper
2022-02-20 16:51:13 1.17MB 中国移动 边缘计算 白皮书 Edge
1
联合学习(PyTorch) 香草联合学习论文的实施:。 在MNIST,Fashion MNIST和CIFAR10(IID和非IID)上进行了实验。 在非IID的情况下,用户之间的数据可以相等或不相等地分割。 由于这些实验的目的是说明联合学习范例的有效性,因此仅使用诸如MLP和CNN的简单模型。 要求 从requirments.txt安装所有软件包 Python3 火炬 火炬视觉 数据 手动下载训练和测试数据集,否则它们将自动从Torchvision数据集下载。 实验在Mnist,Fashion Mnist和Cifar上进行。 要使用自己的数据集,请执行以下操作:将数据集移动到数据目录,并在pytorch数据集类上编写包装器。 运行实验 基线实验以常规方式训练模型。 要使用CPU在MLP上对MNIST运行基线实验,请执行以下操作: python src/baseline_ma
1
cuda_11.2.2_461.33_win10 cudnn-11.2-windows-x64-v8.1.1.33,非安装程序
2022-02-14 02:43:05 975.96MB CUDA cuDNN
1
希望掌握Container基础知识和原理的人员、希望掌握Kubernetes平台管理和运维技能的人员、希望获得HCIP-Cloud Computing-Container V1.0认证的人员 熟悉服务器和PC操作系统、具备网络基础知识、具备存储基础知识、具备虚拟化基础知识、具备Linux基础知识
2022-02-08 14:06:01 83.44MB HCIP-Cloud 云计算容器 Docker kubernetes
1