AirPassengers数据集有两列,分别是时间和客运流量,数据为从1949-1960年,144个月的旅客数量,可作为时间序列分析方法等的数据集使用
2021-10-31 12:43:40 2KB 时间序列 机器学习 RNN ARIMA
1
分解数据: 时间序列稳定化 测试方法: 测试序列稳定性: 看以看到整体的序列并没有到达稳定性要求,要将时间序列转为平稳序列,有如下几种方法:DeflationbyCPI Logarithmic(取对数)
1
沃尔玛产品部门销售的时间序列分析和预测 项目介绍 在该项目中,我们小组根据来自的Walmart五年单位销售数据,使用四种模型对一种Walmart产品(FOODS_3_352)进行了28天单位销售预测。 首先,我们进行了基本的数据清理和可视化,并探索了销售模式。 然后,我们应用了回归模型,ETS(误差,趋势,季节性)模型,季节性ARIMA(自回归,积分,移动平均值)模型和动态回归模型来进一步分解数据并进行预测。 最后,我们基于参数RMSE评估了预测的模型性能。 所有项目文件都包含在此仓库中 使用的工具/语言: Python(pandas, numpy) , R(forecast, ggplot, dbplyr, urca, lubricate) , Excel 请参阅我们的最终 文件描述 1. data calendar_factors.csv包含具有清洗和准备好的日历虚拟变量的目标销
2021-10-24 17:52:21 8.56MB HTML
1
概述 : 在这个脚本中,它使用 MATLAB 中的 ARIMA 模型来预测股票价格。 使用现实生活数据,它将探索如何管理时间戳数据和调整 ARIMA 模型的参数(积分度、自回归阶数、移动平均阶数)。 在 ARIMA 模型之前,它需要进行探索性数据分析并将数据转换为平稳数据。 它还推荐了在进行拟合优度检查时要查看的重要指标。 它将预测股票价格并在蒙特卡罗模拟下运行它们。 [注:不提倡任何特定的策略、因素或方法] 强调 : 1) 使用时间表对象处理从雅虎财经下载的数据2) 借助探索性数据分析将数据转化为静态数据3) ARIMA 建模4) 预测 产品重点: MATLAB 计量经济学工具箱
2021-10-21 19:58:57 620KB matlab
1
基于时间序列ARIMA模型的分析预测算法研究及系统实现
2021-10-15 20:28:05 4.49MB 时间序列
1
电力负荷预测 正在短期电力负荷预测的研究生项目中。 数据取自网站的并且在项目过程中实施了多个时间序列算法。 实施的模型: models文件夹包含在项目过程中实现的所有算法/模型: 前馈神经网络 简单移动平均线 加权移动平均 简单指数平滑 霍尔茨·温特斯 自回归综合移动平均 递归神经网络 长短期记忆单元 门控循环单位细胞 脚本: aws_arima.py ARIMA模型适合上一个月的数据,并预测每天的负载。 aws_rnn.py RNN,LSTM,GRU符合最近2个月的数据,并预测每天的负载。 aws_smoothing.py SES,SMA,WMA适合上一个月的数据,并预测每天的负载。 aws.py调度程序,每天00:30 IST运行上述三个脚本。 pdq_search.py用于根据最近一个月的数据对ARIMA模型的超参数进行网格搜索。 load_scra
2021-10-13 14:47:12 7.91MB machine-learning ses lstm gru
1
它提供了通过 ARIMA 和 NAR 模型预测马来西亚 GDP 的详细工作流程。 在此实时脚本中,它利用内置应用程序(计量经济学建模器和神经网络时间序列)生成预测模型。 此外,它还详细阐述了如何调整参数/超参数以获得最佳拟合模型。 在下一个共享中,我将针对每个步骤更详细地描述我的操作。
2021-10-09 11:18:26 1.83MB matlab
1
这个文档对于接触时间序列分析的人还是很有有用的,可以先了解一下!
2021-10-08 19:17:58 174KB 时间序列 季节调整
1
季节性:与X-13ARIMA-SEATS的R接口
2021-10-08 18:28:12 1.85MB r time-series seasonal-adjustment RR
1
StockAnalysisWebApp 这是一个股票分析Python Flask Web应用程序,可让您使用传统的统计方法(例如ARIMA,HoltWinters以及GBM等)来预测短期股价走势 功能的完整列表是:- ...分析>烛台图 ...分析>记录每日收益 ...分析>相对强度指数表(RSI) ...分析>移动平均收敛散度(MACD) ...分析>布林带图 ...分析>多因素股票筛选和排名 ...预测>移动平均线预测(单变量) ...预测>自动ARIMA + GARCH预测(单变量) ...预测>自动停止冬季预报(单变量) ...预测>向量自动回归预测(多变量) ...预测>几何布朗运动(GBM)预测(多变量) ...预测> Bootstrap抽样预测(多变量) ...预测>最佳风险收益的投资组合权重 此应用程序的有效“实时”版本托管在Pythonanywhere
2021-10-04 20:45:58 8.4MB JupyterNotebook
1