针对高光谱图像特征利用不足和训练样本难以获取的问题,提出了一种具有多特征和改进堆栈稀疏自编码网络的高光谱图像分类算法。采用流形学习获得高光谱图像的低维数据结构,并提取高光谱图像的光谱特征、具有空间信息的局部二值模式(LBP)特征及拓展多属性剖面 (EMAP)特征。利用主动学习查询特征性强的未标记样本并将其标记,利用融合空谱联合信息的样本训练堆栈主动稀疏自编码神经网络并用Softmax分类器对其分类。Indian pines数据集的总体分类精度达到98.14%,Pavia U数据集总体分类精度达到97.24%。实验结果表明,该算法分类精度高,边界点分类效果更好。
1