基于OFDM随机步进频的雷达通信一体化信号模型
2023-04-06 12:09:10 1.31MB 研究论文
1
任务:使用机器学习相关知识完成购房贷款违约预测,给定特征字段,输出是否会发生逾期的预测。 1.2 实验要求 1.2 题目背景 随着世界经济的蓬勃发展和中国改革开放的逐渐深入,无论是企业的发展还是从人们消费观念的转变,贷款已经成为企业和个人解决经济问题的一种重要方式。随着银行各种贷款业务的推出和人们日益膨胀的需求,不良贷款也就是贷款违约的概率也随之激增。为了避免贷款违约,银行等金融机构在发放贷款时会对借款人的信用风险进行评估或打分,预测贷款违约的概率并根据结果做出是否发放贷款的判断。如何在发放贷款前有效的评价和识别借款人潜在的违约风险,是金融机构信用风险管理的基础和重要环节,用一套科学的模型和系统来判定贷款违约的风险性可以将风险最小化和利润最大化。 1.2 数据集 数据集在../dataset 目录下,train.csv 为训练集数据,包含 120000 条数据,每条数据除去 id 和结果共有 50 个特征。test.csv 为预测集数据,包含 30000 条数据等待预测。 1.2 任务描述 本任务研究如何借助非平衡数据分类的思想对银行等金融机构的购房贷款数据进行分析,并基于随机森
2023-04-06 02:22:48 8.04MB 机器学习 随机森林
1
主要介绍了python随机模块random的22种函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-04-04 14:40:09 397KB python随机模块random python random
1
MATLAB首先对语音进行不同的非线性自适应时频分析的去噪,然后提取MFCC、GFCC、LPCC等特征,最后通过随机森林,对音标进行分类注1:音频文件数据集;注2:一行代码自动添加文件和子文件到路径;
2023-04-03 10:29:31 4KB matlab
1
基于监测数据及机器学习算法的湖泊水质实时评价技术对当前湖泊水资源的管理、维护和保护具有重要意义。本文针对巢湖水质的类别评价,利用随机森林(Random Forest, RF)分类算法对该区域水质进行类别判定。与其他算法相比,随机森林算法有着精度高、可容忍噪声强等诸多优点。测试结果表明,当决策树的棵数ntree=300,分裂属性集中属性个数mtry=2时,在合肥湖滨监测断面水质分类准确率可达96.15%,在巢湖裕溪口监测断面水质分类准确率高达100%,该方法具有稳健性较高、实用性强、泛化性能好等特点, 能够有效进行水质评价。

1
(1)台体运动方程式 在不考虑台体绕稳定轴的阻尼系数和弹性约束的情况下,有 Me(s) α(shTT JpS- 式中 Jp一一台体及其附件相对输出轴的转动惯量。 (2) 浮子积分陀螺仪传递函数 旦旦2 H/C 一旦L α(s)-ts+1-JhG (3) 平台控制器传递函数为系统待选定的参数,设 在 s = 0 时,以 s) = C) 。 (4) 直流力矩电机传递函数 f一 (s二二~一 = G创(sυ) θ (s) 在实际应用中,可认为是一非周期环节 且坠) C2 eμ s) - rs + 1 (5.2. 1) (5.2.2) (5.2.3) (5.2.4) 考虑到浮子积分陀螺仪的陀螺效应,以及引起陀螺漂移的干扰力矩,可忽略力矩电机中的 反电势效应。系统的方块图可由图 5.10 给出。 在第三章我们给出用于捷联惯导系统浮子积分陀螺的一组参数,对于平台系统用浮子积 分陀螺的时间常数 J/C 为毫秒级。对于平台系统所用直流力矩马达,已采用永磁式马达,在一 般工程应用旋转速率下,马达的反电势可以忽略,马达的传递函数还可进一步简化。 1∞ 我们对系统做如下分析。 1.设 Mβ = O , MjY 或 My 不等于零。 由图 5.10 可简化为图 5.11 的形式。
2023-04-02 08:57:41 6.85MB 惯性导航 邓正隆
1
清华大学应用随机过程课后习题答案(林元烈)很难得的一套答案
1
颜色分类leetcode mlrose:机器学习、随机优化和搜索 mlrose 是一个 Python 包,用于将一些最常见的随机优化和搜索算法应用于一系列不同的优化问题,包括离散值和连续值参数空间。 项目背景 mlrose 最初是为了支持佐治亚理工学院 OMSCS/OMSA 课程 CS 7641:机器学习的学生而开发的。 它包括本课程中教授的所有随机优化算法的实现,以及将这些算法应用于整数字符串优化问题的功能,例如 N-Queens 和背包问题; 连续值优化问题,如神经网络权重问题; 和旅游优化问题,例如旅行商问题。 它还具有解决用户定义的优化问题的灵活性。 在开发时,不存在将所有这些功能集中在一个位置的单个 Python 包。 主要特点 随机优化算法 实现:爬山、随机爬山、模拟退火、遗传算法和(离散)MIMIC; 解决最大化和最小化问题; 定义算法的初始状态或从随机状态开始; 定义您自己的模拟退火衰减计划或使用三种预定义的可自定义衰减计划之一:几何衰减、算术衰减或指数衰减。 问题类型 解决离散值(位串和整数串)、连续值和旅游优化(旅行销售员)问题; 定义您自己的适应度函数以进行优化或
2023-03-28 18:04:17 213KB 系统开源
1
 利用加速度信号测量位移是油田抽油井光杆位移测量的主要方法,而加速度信号的随机噪声和趋势项是影响测量精度的主要因素,本文提出了一种基于学习的实时消噪和剔除趋势项方法。学习时先获取一段时间的加速度信号,再通过时间序列分析技术得出ARIMA模型及其参数,最后基于FFT变换的Rife-Jane频率估计方法求出加速度信号的周期;在线实时消噪和剔除趋势项方法是基于学习阶段所得模型参数,运用卡尔曼滤波技术消除加速度信号随机噪声;按周期两次积分得到光杆位移,用加窗递推最小二乘法在线消除趋势项。通过抽油机半实物仿真平台测试和分析加速度信号,结果表明,该方法有效地去除了加速度信号中的噪声和趋势项,极大地提高了位移的测量精度。
1
matlab肌电信号处理代码EMG手腕姿势分类 EMG分类系统的M文件(计算机Matlab代码)集合,用于根据[1]中所述的来自Myo Armband的随机默认前臂EMG信号来识别九种腕手运动。 该系统使用八个时域特征的线性组合,然后进行线性判别分析(LDA)投影和多层感知器(MLP)分类。 使用Myo Armband中随附的8个主动传感器,对年龄在27±4岁的10位受试者(七名男性,三名女性)的EMG录音进行了开发和测试。 该系统在八个通道的EMG段上运行。 需要Matlab编程环境。 可以在上找到更新。 要引用此系统,请使用参考文献[1,2]。 概述: 一种基于随机获取的前臂EMG信号的九种腕手动作的低复杂度方法。 该方法是通过评估来自八个通道的256段EMG窗口中的八个时域特征而开发的。 来自八个通道的估计特征通过LDA分析进行合并和缩减,并使用数据驱动的MLP方法进行分类。 此处的代码实现了此运动分类系统,该系统已通过EMG记录进行了训练,并记录了来自10个健康受试者的100次训练中的9个运动数据。 快速开始: 使用system_parameters函数在Matlab中设置系统
2023-03-24 17:32:39 224KB 系统开源
1