当前的工作集中在使用JAVA和开源资源进行“原始序列分析”的脱机工具的软件开发中。 SEQUENCIA工具是主要序列分析的离线工具,对于全世界的研究人员来说,这是一个相当普遍的话题。 序列名称,序列长度,吸光度,净电荷,等电荷,氨基酸组成,氨基酸分类,脂肪指数,不稳定性指数,平均亲水性等是此工具存在的与主要序列分析相关的属性。 这项工作包括在一个通用平台下与一级序列分析有关的所有理化特性。 JAVA,BIOJAVA用于平台无关体系结构。 该工具包括脱机属性,可以将结果存储为文本格式,此处我们可以粘贴多个序列,还可以上载FASTA文件以计算参数。
2024-01-19 10:51:41 3.89MB 开源软件
1
2024-01-17 09:50:56 471B ALM序列号
1
自动获取ESET NOD32升级所需的用户名和密码,免去了到处找升级ID的麻烦。
2024-01-15 22:34:40 863KB ESET NOD32序列号获取器v2.0
1
在之前的文章中我们已经讲过Informer模型了,但是呢官方的预测功能开发的很简陋只能设定固定长度去预测未来固定范围的值,当我们想要发表论文的时候往往这个预测功能是并不能满足的,所以我在官方代码的基础上增添了一个滚动长期预测的功能,这个功能就是指我们可以第一次预测未来24个时间段的值然后我们像模型中填补 24个值再次去预测未来24个时间段的值(填补功能我设置成自动的了无需大家手动填补),这个功能可以说是很实用的,这样我们可以准确的评估固定时间段的值,当我们实际使用时可以设置自动爬取数据从而产生实际效用。本文修改内容完全为本人个人开发,创作不易所以如果能够帮助到大家希望大家给我的文章点点赞,同时可以关注本专栏(免费阅读),本专栏持续复现各种的顶会内容,无论你想发顶会还是其它水平的论文都能够对你有所帮助。 时间序列预测在许多领域都是关键要素,在这些场景中,我们可以利用大量的时间序列历史数据来进行长期预测,即长序列时间序列预测(LSTF)。然而,现有方法大多设计用于短期问题,如预测48点或更少的数据。随着序列长度的增加,模型的预测能力受到挑战。例如,当预测长度超过48点时,LSTM网络的预测
2024-01-15 21:00:38 1.01MB 毕业设计 个人开发 网络 网络
1
最近 Transformer 在统一建模方面表现出了很大的威力,是否可以将Transformer应用到时序异常检测上引起了很多学者的研究兴趣。 最近来自阿里达摩院、上海交通大学的几位学者就近年来针对时间序列场景中的Transformer模型进行了汇总,在Arxiv上发表了一篇综述。综述涵盖了Transformer针对时序问题下的具体设计,包含预测、异常检测、分类等诸多工业界常用场景,并开源了代码,是非常不错的学习资料。 优秀毕业设计:基于transformer的序列数据二分类完整代码+数据可直接运行
2024-01-15 18:12:59 492KB 毕业设计 transformer
1
Xenocode+Postbuild+2010+for+.NET Xenocode 混淆器 程序混淆器
1
通过状态空间方法的时间序列分析
2024-01-14 13:08:42 8.74MB 状态空间方法 时间序列分析
1
使用从循环流化床(CFB)系统的76 mm内径和10 m高立管收集的嵌入式固体浓度时间序列,对高通量气固立管的入口和壁动力学进行了分析。 提升管以4.0至10.0 m / s的空气速度和50至550 kg / m2s的废液催化裂化(FCC)催化剂颗粒的固体通量运行,平均粒径为67μm,密度为1500 kg / m3。 使用准备好的FORTRAN 2008代码对数据进行分析,以获得相关积分,然后确定有关超球形半径及其轮廓的相关尺寸,并对其图进行研究。 发现中心处的相关尺寸轮廓具有比壁区域轮廓更高的值的单个峰。 朝向壁,这些轮廓具有双峰或多个峰,显示了双分形或多分形流动行为。 随着速度增加,壁区域轮廓变得随机且不规则。 进一步发现,随着高度的增加,相关尺寸分布在中心处朝向较高的超球面半径移动,并且在r / R = 0.81时在壁区域中朝向较低的超球面半径移动。 与其他分析方法相比,本研究中已建立的映射相关尺寸轮廓的方法形成了一种用于分析高通量立管动力学的合适工具。 但是,建议使用已建立的方法对在高通量条件下运行的其他不同尺寸的气固CFB立管进行进一步分析。
2024-01-14 11:54:13 5.42MB 相关积分 映射相关维
1
深度学习模型现在很火,应用的领域也是各方各面。在序列预测方面,当属LSTM模型的应用最广。我基于matlab编写了用LSTM模型实现多步预测时间序列的程序代码。序列数据是我随机生成的,如果有自己的数据,就可以自己简单改一下代码,读取txt或excel都可以。注意读取后的序列必须命名为行向量。代码最后还提供了误差分析部分,展示了绝对误差、MAE、RMSE、MAPE共4个误差指标,可供参考。代码基于matlab2021版编写,适用于2018版之后的所有版本。
2024-01-12 14:18:10 3KB matlab lstm 文档资料 开发语言
pytorch采用LSTM实现文本翻译,序列到序列学习Seq2Seq,数据集为Multi30k,从德语(de)翻译到英语(en),有编码层和解码层。
2024-01-12 13:15:19 51.87MB pytorch pytorch lstm Seq2Seq
1