《YOLOv8在RKNN3588上的混合量化实践》 YOLOv8是一款高效、精确的实时目标检测模型,它在前几代YOLO的基础上进行了优化,提升了检测速度和准确性。而RKNN3588是基于ARM架构的高性能AI计算平台,其强大的计算能力和低功耗特性使得它在嵌入式设备上运行深度学习模型成为可能。本文将详细介绍如何将YOLOv8模型通过混合量化技术移植到RKNN3588平台上。 理解混合量化是关键。混合量化是指在模型转换过程中,结合全精度和低精度数据类型,以达到兼顾模型性能和计算效率的目的。在YOLOv8模型上应用混合量化,可以有效减小模型体积,降低内存消耗,同时尽可能保持预测精度。 在将YOLOv8模型部署到RKNN3588之前,我们需要进行模型的ONNX格式转换。`onnx2rknn_step1.py`和`onnx2rknn_step2.py`是两个关键的Python脚本,它们分别对应模型转换的不同阶段。`onnx2rknn_step1.py`用于将原始的YOLOv8模型转换为ONNX(Open Neural Network Exchange)格式,这是跨框架的模型表示,方便进一步处理。然后,`onnx2rknn_step2.py`则将ONNX模型转换为专为RKNN3588优化的RKNN模型,这一步通常包括模型的量化操作。 在转换过程中,开发者需要根据实际需求调整量化策略,如选择哪些层进行量化,是全通道量化还是通道分组量化,以及设定不同的量化位宽。这个过程需要对模型的结构和运算特性有深入理解,以确保量化后的模型在保持检测性能的同时,能充分发挥硬件的计算能力。 `dataset.txt`文件通常是模型训练或验证时使用的数据集描述文件,里面包含了样本图片的路径和对应的类别标签。在部署模型到RKNN3588之前,我们需要对模型进行校准,以确定最佳的量化参数。这个过程通常需要用到一部分代表性的数据集,通过运行模型并观察输出结果,从而调整量化参数以达到最优性能。 总结来说,YOLOv8在RKNN3588上的混合量化涉及模型的ONNX转换、量化策略的定制、模型校准和最终的RKNN模型生成。这一系列步骤需要对深度学习模型、量化技术以及目标硬件平台有深入的理解。通过合理的设计和优化,我们可以实现一个在嵌入式设备上高效运行的目标检测系统,满足实时性和准确性的双重需求。
2024-07-14 20:50:07 177KB 深度学习
1
German-Credit-Risk UCI Machine Learning Dataset models = pd.DataFrame({'Models':['Random Forest Classifier', 'Support Vector Classifier', 'Logistic Regression', 'Gradient Boost Classifier'],'Score':[score_rfc ,score_svc, score_lr, score_gbc]}) models.sort_values(by='Score', ascending = False)
2024-07-14 15:00:17 913KB python
1
Motif编程学习
2024-07-13 09:46:56 2.76MB Motif
1
使用Python和Keras框架开发深度学习模型对CIFAR-10图像分类的项目是一个典型的机器学习任务,涉及到构建、训练和评估一个深度神经网络来识别图像中的不同类别。以下是这个项目的详细描述: ### 项目概述 CIFAR-10是一个包含60,000张32x32彩色图像的数据集,分为10个类别,每个类别有6,000张图像。这些类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。项目的目标是构建一个深度学习模型,能够自动将新的图像分类到这10个类别中的一个。 技术细节 卷积神经网络(CNN):由于图像数据具有空间层次结构,CNN能够有效地捕捉这些特征。 归一化:将图像像素值归一化到0-1范围内,有助于模型训练的稳定性和收敛速度。 批量归一化:加速模型训练,提高模型对初始化权重不敏感的能力。 丢弃层(Dropout):防止模型过拟合,通过随机丢弃一些神经元来增加模型的泛化能力。 优化器:如Adam,它结合了RMSprop和Momentum两种优化算法的优点。 损失函数:binary_crossentropy适用于多分类问题,计算模型输出与真实标签之间的差异。
2024-07-12 19:33:06 273.66MB python keras 深度学习
1
github官网下载的,深度学习 with PyTorch 中文版, 项目网页地址:https://tangshusen.me/Deep-Learning-with-PyTorch-Chinese/#/ 基本摘录版(Essential Excerpts),共141页, 内容包括以下五个部分: 1.深度学习与PyTorch简介 2.从一个张量开始 3.使用张量表示真实数据 4.学习机制 5.使用神经网络拟合数据
2024-07-12 14:59:56 56.41MB python pytorch 深度学习
1
离线强化学习(Offline Reinforcement Learning, ORL)是一种机器学习方法,它允许算法通过观察预先收集的数据集来学习策略,而无需与环境实时交互。PyTorch 是一个流行的深度学习框架,它提供了灵活的计算图和易于使用的API,使得实现复杂的深度强化学习算法变得相对简单。本资源集中了七种基于PyTorch实现的离线强化学习算法,分别是:行为克隆(Behavior Cloning, BC)、BCQ、BEAR、TD3-BC、保守Q学习(Conservative Q-Learning, CQL)、独立Q学习(Independent Q-Learning, IQL)以及优势加权Actor-Critic(Advantage Weighted Actor-Critic, AWAC)。 1. **行为克隆(Behavior Cloning, BC)**:这是一种监督学习方法,通过模仿专家示例的动作来学习策略。BC的目标是最大化动作概率的似然性,即让模型预测的数据尽可能接近于专家数据。 2. **BCQ(Bootstrapped DQN with Behavior Cloning)**:该算法结合了行为克隆和Bootstrapped DQN,旨在处理离线数据的分布偏移问题。它使用多个Q函数的集合,并结合行为克隆来提高稳定性。 3. **BEAR(Bootstrapped Environments with Adversarial Reconstructions)**:BEAR是一种确保策略接近原始数据分布的方法,通过最小化策略动作与离线数据中的动作之间的距离,避免了样本分布不匹配导致的问题。 4. **TD3-BC(Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning)**:TD3是DDPG(Deep Deterministic Policy Gradient)的一个改进版本,而TD3-BC在TD3的基础上加入了行为克隆,进一步提高了离线学习的稳定性。 5. **保守Q学习(Conservative Q-Learning, CQL)**:CQL引入了一个额外的损失项,以防止Q值过高估计,从而保持对离线数据分布的保守估计,避免选择超出数据范围的行动。 6. **独立Q学习(Independent Q-Learning, IQL)**:IQL是针对多智能体强化学习的一种方法,但在离线设置下也可以应用。每个智能体独立地学习Q值函数,以最大化其自己的长期奖励。 7. **优势加权Actor-Critic(Advantage Weighted Actor-Critic, AWAC)**:AWAC结合了Actor-Critic架构和优势函数,通过在目标策略更新中考虑优势函数,使得策略更倾向于选择在离线数据中表现良好的动作。 这些算法在不同的强化学习环境中进行测试,如MuJoCo模拟器中的连续控制任务,通过比较它们的性能,可以深入理解各种离线强化学习方法的优缺点。对于研究者和开发者来说,这个资源包提供了一个宝贵的平台,用于探索和比较不同的离线学习策略,有助于推动强化学习领域的发展。在实际应用中,可以根据特定任务的特性选择合适的算法,或者将这些方法作为基础进行进一步的研究和改进。
2024-07-09 17:15:53 26.45MB pytorch pytorch 强化学习
1
强化学习的倒立摆程序,用MATLAB语言编写,可在maltab上运行。
2024-07-09 16:35:43 4KB pendulum 强化学习
不用辛苦外网下载了,又慢又不稳定,支持python3.5及以上 前置资源需要下载:numpy、scipy、matplotlib
2024-07-09 16:15:36 3.92MB 数据挖掘 机器学习
1
基于深度学习的医疗图像分割综述 深度学习技术的崛起为医疗图像处理带来了革命性的变革,尤其是在图像分割领域。本次综述将对基于深度学习的医疗图像分割技术进行详细的介绍和分析。 医疗图像分割的应用 医疗图像分割技术可以帮助医生更准确地诊断病情,进行更精确的手术导航,以及开展其他重要的医学应用。医疗图像分割的应用包括: 1. 医学影像诊断:在医学影像诊断中,图像分割技术可以帮助医生将图像中的病变区域与正常组织区分开来,从而提高诊断的准确性。例如,CT扫描中的肿瘤分割,X光中的肺炎分割等。 2. 手术导航:在手术导航中,医生可以使用图像分割技术来创建3D模型,以便在手术过程中更好地理解患者内部的结构。这可以帮助医生更精确地定位病变区域,并提高手术效率。 3. 病理分析:在病理分析中,图像分割技术可以帮助医生将组织样本分成不同的区域,以便更好地理解疾病的发展过程和治疗效果。 深度学习模型概述 深度学习模型是基于深度学习的医疗图像分割技术的核心。常见的深度学习模型包括: 1. U-Net:U-Net是最常用的医疗图像分割模型之一。它是一个全卷积网络(FCN)的变种,具有一个收缩路径(编码器)和一个扩展路径(解码器),形状像字母“U”。U-Net能够捕获图像的上下文信息和位置信息,具有良好的空间一致性。 2. ResNet:ResNet是一种残差网络,通过引入残差块来帮助模型更好地学习和表示图像特征。ResNet的引入提高了模型的表达能力和泛化性能,使得模型能够更好地处理复杂的医疗图像数据。 3. EfficientNet:EfficientNet是一种新型的神经网络架构,旨在平衡模型的大小、性能和精度。它通过改变网络结构,使用更少的计算资源来达到更好的性能。在医疗图像分割中,EfficientNet具有广泛的应用前景。 4. Transformer:Transformer模型在自然语言处理领域取得了巨大成功。由于其具有全局信息交互的能力,Transformer也被引入到图像分割任务中。例如,ViT(Vision Transformer)就被应用于医疗图像分割任务中,取得了较好的效果。 训练和优化方法 训练和优化方法是基于深度学习的医疗图像分割技术的重要组成部分。常见的训练和优化方法包括: 1. 数据增强:由于医疗图像数据集通常较小,为了提高模型的泛化性能,通常会使用数据增强技术来扩充数据集。这包括旋转、缩放、裁剪、翻转等操作。 2. 损失函数:在训练过程中,损失函数被用来衡量模型的预测结果与真实标签之间的差距。常用的损失函数包括交叉熵损失、Dice损失、IoU损失等。 3. 优化算法:常见的优化算法包括随机梯度下降(SGD)、Adam、RMSProp等。这些算法可以帮助我们调整模型的参数,以最小化损失函数。 挑战和展望 基于深度学习的医疗图像分割技术仍然面临着许多挑战和挑战。例如,医疗图像数据集的获取和标注、模型的泛化性能、计算资源的限制等。然而,基于深度学习的医疗图像分割技术也展望了广泛的应用前景,例如医学影像诊断、手术导航、病理分析等。
2024-07-09 16:00:15 2.4MB
1
为嵌入式开发者提供openwrt的开发文档,路由模块是采用openwrt系统的,提供一系列的教程开发。
2024-07-09 15:52:38 6.43MB openwr rt5350 MT7688 mt7628
1