内容概要:本文详细介绍了使用Abaqus和fe-safe软件进行多场耦合仿真分析的工作流程,包括几何模型构建、材料属性定义、网格划分、约束与载荷施加、求解作业以及结果后处理等步骤。具体操作涵盖模型导入、材料属性设置、截面创建与指派、网格划分控制、分析步创建与编辑、接触属性定义、载荷与边界条件设定、作业提交及求解、可视化模块中应力云图查看等内容。最后,文章还讲解了如何利用nCode模块进行疲劳分析,包括VibrationGenerator属性设置、应力组合方法选择、PSD循环计数法设置以及最终结果查看。 适用人群:具有一定的有限元分析基础,从事机械设计、材料科学等相关领域的工程师和技术人员。 使用场景及目标:①掌握Abaqus软件中多场耦合仿真的完整流程,包括从模型构建到求解作业的各个细节;②学会使用fe-safe和nCode模块进行疲劳分析,了解如何设置材料属性、载荷、边界条件及解读分析结果;③提高对复杂工程问题(如齿轮传动系统)的仿真分析能力,确保设计方案的安全性和可靠性。 其他说明:本文内容详尽,图文并茂,不仅提供了操作步骤,还解释了每一步骤背后的原理和注意事项。建议读者在实践中逐步熟悉各个模块的功能,结合实际案例不断练习,以达到熟练掌握的目的。此外,对于初学者来说,可以先尝试简单的案例,随着经验积累再挑战更复杂的工程问题。
2025-09-25 09:59:05 11.44MB Abaqus 有限元分析 热力耦合 疲劳分析
1
三维重建是计算机视觉领域中的一个重要课题,它涉及图像处理、几何建模以及机器学习等多个方面的技术。本项目提供的是一套基于VC++的开发代码,主要应用于点云提取和三维扫描数据的重建,非常适合学习和研究。 我们要理解点云的概念。在三维空间中,点云是由大量离散的三维坐标点组成的数据集,这些点可以代表物体表面的各个位置。通过多个二维图像的对应关系,我们可以计算出这些点的位置,从而构建出物体的三维模型。在图像处理中,点云提取通常包括特征匹配、投影和反投影等步骤。 特征匹配是点云提取的关键步骤,它涉及到图像的特征检测和描述子计算。常见的特征有SIFT(尺度不变特征变换)、SURF(加速稳健特征)和ORB( Oriented FAST and Rotated BRIEF)等。这些特征具有良好的旋转、缩放和光照不变性,有助于在不同视角或光照条件下找到对应的图像点。 投影和反投影则是将二维图像信息转换为三维空间的过程。投影是从三维世界到二维图像的映射,如透视投影和正交投影;反投影则相反,从二维图像反向推算出三维空间中的点。这一过程需要用到相机内参和外参,内参描述了相机自身的特性,如焦距、主点位置等;外参则表示相机相对于场景的位置和姿态。 在获得点云数据后,下一步就是进行三维重建。这通常包括点云配准、表面重建和精细化处理等阶段。点云配准是通过比较不同视角下的点云,找出最佳的对应关系,使得它们在同一个坐标系下对齐。常用的方法有ICP(迭代最近点)算法。表面重建则根据点云生成连续的三角网格模型,如Poisson重建或者基于 delaunay 三角剖分的方法。精细化处理通常是对重建结果进行平滑和去噪,提高模型的视觉效果。 在这个VC++项目中,开发者可能已经实现了这些关键算法,并封装成易于使用的库或函数。通过阅读和理解代码,我们可以深入学习点云处理和三维重建的实现细节,进一步提升自己的编程和理论水平。同时,对于图像处理爱好者和专业人士来说,这是一个极好的实践平台,能够帮助他们将理论知识转化为实际应用。 总结起来,本项目围绕“三维重建”这一主题,涵盖了点云提取、特征匹配、投影与反投影、点云配准和表面重建等多个关键技术。通过学习和研究这个VC++代码库,不仅可以深入了解图像处理技术,还能锻炼编程技能,为未来在机器人导航、增强现实、虚拟现实等领域的工作打下坚实基础。
2025-09-24 21:48:37 26.78MB 三维重建 图像处理
1
胡广书的《数字信号处理》课件主要涵盖了离散时间信号与系统的基础知识,尤其在第一章中,详细阐述了离散时间信号的基本概念、典型离散信号以及离散信号的各种运算。 离散时间信号是信号处理中的重要概念,它是指在时间轴上取离散点的信号,通常通过模数转换(A/D)从连续时间信号得到。离散时间信号可以用x(nT)来表示,其中n是离散时间点的索引,T是采样间隔。在实际处理中,由于非实时性和存储需求,我们常简化表示为x(n),它代表一系列数值,即序列{ x(n) }。 典型的离散信号包括: 1. 单位抽样信号或单位脉冲δ(n),其特征是除了n=0时值为1,其他时刻均为0。 2. 脉冲串序列p(n),它是δ(n)的线性组合,例如2的负幂次k次方的δ(n)之和。 3. 单位阶跃序列u(n),当n>=0时值为1,否则为0,其性质决定了与之相关的信号n值仅限于非负轴。 4. 矩形序列RN(n),与单位抽样和单位阶跃有特定的关系,可以表示为δ(n)或u(n)的线性组合。 5. 正弦序列和实指数序列,正弦序列具有数字频率ω,实指数序列在a不等于1时可能发散或收敛。 离散信号的运算主要包括: 1. 移位:左移或右移k位,对应x(n-k)或x(n+k),k为正负整数。 2. 翻转:序列x(n)关于n=0的对称轴进行翻转,形成x(-n)。 3. 和:两个序列的对应项相加。 4. 积:两个序列的对应项相乘。 5. 累加:序列的累加运算,y(n)是所有n值小于等于n的x(n)值之和。 6. 差分:前向差分和后向差分,用于求导或近似求导。 7. 时间尺度变换:改变序列的时间尺度,如x(an)或x(n/a),a为正整数,影响采样率。 8. 奇偶分解:将信号分为偶信号xe(n)和奇信号x0(n),信号x(n)可以表示为两者之和。 这些基本概念和运算构成了数字信号处理的基础,对于理解和处理离散时间信号至关重要,特别是在信号分析、滤波器设计、通信系统等领域有着广泛的应用。对于研究生来说,深入理解这些内容是进入数字信号处理领域的关键。
2025-09-24 16:25:20 868KB 数字信号处理
1
本资源提供一种基于C/C++的高效突发信号检测算法,适用于无线通信中常见突发信号(如AIS、ACARS、ADS-B、VHF数据链等)的实时或离线分析。代码实现以下核心功能: 动态噪声估计:采用滑动窗口和抽样统计技术,自适应计算噪声基底。 智能阈值调整:结合信号幅度与噪声特性,动态生成检测门限,提升灵敏度。 突发参数可配置:支持自定义突发长度范围(minBurstLen/maxBurstLen)、检测阈值(thresholdFactor)等关键参数。 完整示例:提供从文件读取IQ数据、检测逻辑到执行时间统计的一站式示例,便于快速集成到通信系统或科研项目中。 适用场景: 无线通信系统开发(SDR、协议解析) 航空航天信号分析(ADS-B、ACARS) 海事AIS信号处理 信号处理算法教学与科研
2025-09-24 14:56:03 7KB 信号处理 ACARS ADSB
1
内容概要:本文档为gee scripts.txt,主要展示了利用Google Earth Engine(GEE)平台进行特定土地覆盖类型(如高盐度盐滩,即apicum类)的遥感影像处理与分类的Python脚本。首先初始化了GEE环境,接着定义了年份、类别ID和类别名称等参数。通过调用GEE中的图像和数据集,创建了监督分类图像,并对训练和测试数据集进行了导出设置,包括将分类后的图像及其元数据导出为资产,同时设置了导出的详细参数,如描述、资产ID、区域范围、分辨率(scale)、最大像素数量等。; 适合人群:熟悉Python编程语言,有一定遥感数据分析经验的研究人员或工程师,特别是那些专注于土地覆盖变化监测、环境科学研究领域的专业人士。; 使用场景及目标:①需要从GEE获取特定年份和类别的遥感影像数据并进行预处理;②构建监督分类模型,对特定类型的地表覆盖进行识别和分类;③将处理后的数据导出到GEE资产中,以便进一步分析或与其他数据集集成。; 阅读建议:此脚本适用于具有遥感背景知识的读者,在理解和修改代码前,建议先熟悉GEE平台的基本操作及Python API的使用方法,同时关注脚本中关键变量(如year、classID)的定义及其对后续处理步骤的影响。
2025-09-23 22:10:38 1KB Earth Engine Python GIS
1
乳腺癌是女性中最常见的恶性肿瘤之一,早期发现和正确诊断对于提高患者的生存率和生活质量具有重要意义。随着医疗影像技术的发展,医学乳腺癌检测处理系统成为诊断乳腺癌的有效手段,尤其在自动化的医疗影像分析中扮演着关键角色。本文档介绍了一种融合自适应中值滤波和高斯混合模型(GMM)分类的乳腺癌检测处理系统,以及相关的Matlab源码实现。 乳腺癌检测处理系统的原理和流程可以分为几个主要步骤: 1. 图像获取:该步骤涉及使用乳腺X线摄影(Mammography)或磁共振成像(MRI)等医学影像设备获取乳腺组织的数字化图像。这些设备能够提供高质量的乳腺图像,为后续处理提供了基础数据。 2. 预处理:在这一阶段,原始图像需要经过一系列处理以提高图像质量,便于后续步骤中提取特征。预处理中常用的自适应中值滤波器能够有效去除噪声,同时保留图像的边缘信息,这对于保留乳腺组织的重要结构特征至关重要。 3. 特征提取:处理后的图像需要提取出能够反映乳腺组织特征的数值信息。这些特征可以包括纹理、形状、灰度共生矩阵(GLCM)或其他统计特征。提取的特征将作为GMM分类器的输入。 4. GMM分类:GMM分类器是该系统中的核心部件,其工作原理是将数据分布划分为多个高斯分布,以代表不同的乳腺癌类型,如良性肿瘤、恶性肿瘤等。通过比较特征与已知癌症类型的高斯分布,系统可以计算出每个类别的似然性,并据此进行分类。 5. 训练阶段:该步骤中,GMM模型将使用大量正常和异常乳腺图像进行训练。通过这一过程,确定各个高斯成分的参数,包括均值、方差和混合系数,以构建适用于乳腺癌检测的分类模型。 6. 分类与诊断:对于新获取的乳腺图像,将应用训练好的GMM模型进行分类。通过这一过程,生成整个图像的分类结果,从而提供对乳腺癌诊断的参考。 7. 评估与反馈:系统需要评估其性能,并通过比较实际病理诊断结果来进行调整。反馈机制能够帮助研究人员根据需要不断优化模型参数或改进特征提取方法,以提高检测的准确性和可靠性。 除上述乳腺癌检测处理系统及其Matlab源码实现外,文档还提供了一些仿真咨询服务,涵盖了各类智能优化算法的改进及应用。此外,还提供了机器学习和深度学习在分类与预测方面的一些分类方法,例如BiLSTM、BP神经网络、CNN、DBN、ELM等,这些方法在其他类型的图像处理和分类任务中也有广泛的应用。 以上内容介绍了乳腺癌检测处理系统的工作原理、实现方式和相关技术应用,为医疗科研人员和相关领域工作者提供了宝贵的参考信息。乳腺癌的早期检测对于治疗效果和患者预后具有重要影响,因此,开发出准确、高效的检测系统对于乳腺癌的防治具有重大意义。
2025-09-23 20:26:29 12KB
1
基于Vivado平台的AD9680 FPGA芯片测试程序:高速采样、lane4信号传输与jesd204b协议处理_Verilog实现,基于Vivado平台的AD9680 FPGA芯片测试程序——Verilog编写,实现1G采样率Lane4与JESD204B接收功能,基于vivado的ad9680 FPGA芯片测试程序,1g采样率lane4。 verilog编写,包括配置ad,配置时钟,jesd204b接收 ,基于您的描述,提取的核心关键词为: 基于Vivado的AD9680; FPGA芯片测试程序; 1G采样率; Lane4; Verilog编写; 配置AD; 配置时钟; JESD204B接收 结果用分号分隔为: 基于Vivado的AD9680; FPGA芯片测试; 1G采样率; Lane4; Verilog编程; AD配置; 时钟配置; JESD204B接收 这些关键词应该能概括您所描述的基于Vivado的ad9680 FPGA芯片测试程序的主要内容。,基于Vivado的AD9680 FPGA测试程序:1G采样率JESD204B接收配置与AD时钟设置
2025-09-23 17:29:45 355KB kind
1
MS1861单颗芯片集成了HDMI、LVDS和数字视频信号输入;输出端可以驱动MIPI(DSI-2)、 LVDS、Mini-LVDS 以及 TTL 类型 TFT-LCD 液晶显示。可支持对输入视频信号进行滤波,图 像增强,锐化,对比度调节,视频缩放,裁剪,旋转,内部字符(图形)叠加,帧频变化等处 理。针对 TFT-LCD 屏的不同特性可进行伽马、抖动算法处理,输出屏驱动所需的时序控制信 号。集成了 ARM Cortex-M0+处理器,扩展 UART,IIC,SPI,PWM,GPIO 以及 ADC 等外设 接口。 芯片内建的视频、图形、处理器以及屏驱等多个功能模块,使得 MS1861 单芯片可实现众 多产品方案,也可广泛应用到视频信号接收、处理以及点屏的产品中 MS1861是一款高度集成的视频处理芯片,它提供了HDMI、LVDS和数字视频信号的输入,并能输出MIPI(DSI-2)、LVDS、Mini-LVDS以及TTL类型的TFT-LCD液晶显示。这款芯片的核心优势在于其能够对输入的视频信号进行一系列复杂的处理操作,如滤波、图像增强、锐化、对比度调节、视频缩放、裁剪、旋转、字符(图形)叠加以及帧频变化等,这些功能对于视频信号的接收、处理和显示至关重要。 MS1861内置了ARM Cortex-M0+微处理器,这使得它具备了丰富的外设接口,包括UART、I2C、SPI、PWM、GPIO以及ADC等。这些接口可以支持与外部设备的通信和数据交换,极大地增强了芯片的灵活性和应用场景。例如,通过I2C接口,用户可以方便地进行配置和控制,而UART则可用于串行通信,SPI则允许高速数据传输。 在系统配置方面,MS1861提供了两种模式:内部MCU模式(MCU_SEL = 0,默认)和外部MCU模式(MCU_SEL = 1)。当选择外部MCU模式时,SASEL用于设置I2C从机地址,而当选择内部MCU模式时,SASEL则用于指定MCU的启动区域。此外,SPI_MODE引脚用于在使用外部MCU时选择SPI通信模式,或者在使用内部MCU时作为SWDIO功能。 该芯片的接口设计考虑到了ESD保护,确保了系统的稳定性。例如,TTL/LVDS RX接口是复用关系,不能同时使用,且需要根据实际需求参考相应的接口设计。另外,电阻应放置于芯片附近的座位上,以减少信号干扰。I2C、UART和GPIO接口提供了多种连接选项,方便用户根据应用需求进行扩展。 在音频输出部分,MS1861还支持QSPI闪存,以及ADC_VREFEXT0和ADC_VREFEXT1两个外部参考电压输入,这有助于实现更精确的模拟信号转换。SPI接口支持SPI3,包括CS、MISO、MOSI和CLK信号线,用于与外部存储器或传感器通信。 总结来说,MS1861芯片是一个功能强大的视频处理解决方案,它集成了多种视频接口和处理能力,可以灵活适应不同显示设备的需求。同时,通过其内置的ARM处理器和丰富的外设接口,可以实现复杂的系统控制和扩展,广泛适用于视频信号处理和显示系统的设计。无论是HDMI转MIPI还是LVDS转MIPI,MS1861都能提供高效、可靠的转换服务。
2025-09-23 14:17:30 648KB arm 视频处理
1
在IT行业中,股票市场数据分析是至关重要的一环,而“除权”则是股票市场中的一个关键概念。除权是指上市公司在分红、送股等权益分配后,调整股票的理论价格,以反映投资者持有股票的实际价值变化。这个过程涉及到复杂的财务计算和数据处理。本项目名为“除权数据处理.zip”,它提供了将除权数据解析并导入通达信软件的工具,旨在帮助投资者更准确地理解和分析股票市场。 通达信是一款广泛使用的金融证券分析软件,它提供了实时行情、交易、资讯等多种功能。通过这个项目,用户可以将除权数据导入通达信,进行深度分析。项目包含的文件有多种类型,如配置文件(prjdzhcq.cfg)、CSV数据文件(除权all.csv、除权.csv)、工程文件(u_frmMain.dcu、u_frmMain.ddp、u_frmMain.dfm)以及程序执行文件(prjdzhcq.dpr、大智慧除权.exe)和安装配置文件(setup.ini)。 1. 配置文件(prjdzhcq.cfg):这类文件通常用于存储应用程序的设置和参数,使得程序可以根据不同的环境或用户需求运行。在这个项目中,它可能包含了读取和解析除权数据的具体路径、格式设定等信息。 2. CSV数据文件(除权all.csv、除权.csv):CSV是逗号分隔值的简称,是一种通用的数据交换格式,适合于存储表格数据。这些文件很可能包含了详细的除权记录,如股票代码、除权日期、分红派息情况、送股比例等,便于程序读取和处理。 3. 工程文件(u_frmMain.dcu、u_frmMain.ddp、u_frmMain.dfm):这些是Delphi编程语言的工程文件,分别代表单元文件、项目文件和表单文件。它们定义了程序的界面布局、逻辑控制和数据处理逻辑。u_frmMain.dcu是编译后的单元代码,ddp和dfm则分别保存了项目配置和用户界面设计。 4. 程序执行文件(prjdzhcq.dpr、大智慧除权.exe):这两个文件是可执行程序,其中prjdzhcq.dpr可能是项目的主程序文件,而大智慧除权.exe可能是另一个与除权相关的辅助程序,或许能够独立处理或转换除权数据。 5. 安装配置文件(setup.ini):这是安装程序的配置文件,用于指导软件的安装过程,包括安装路径、组件选择、依赖关系等信息。 通过这个项目,用户可以将除权数据从CSV文件导入到通达信,实现对股票的除权调整,从而在分析股票历史价格时排除因权益分配带来的影响,得到更准确的图表和指标。这有助于投资者做出更明智的投资决策。同时,结合大智慧除权.exe,可能还可以实现与其他金融软件的兼容,增强数据处理的灵活性和便捷性。这个项目为股票市场的数据处理提供了一套实用的工具,对于熟悉编程的投资者来说,这是一个非常有价值的资源。
2025-09-23 09:47:04 1.19MB 数据导出
1
修改,IP,用户名,密码后发给相应的客户端,双击运行即可将数据凭证添加,减去亲自到对方电脑操作的过程
2025-09-22 23:03:41 254B
1