ARIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。本章将介绍一个实战案例,利用Python编程语言实现了ARIMA模型并进行预测。通过这个案例,我们将深入了解ARIMA模型的构建过程和关键步骤,并学习如何使用Python中的相关库来进行模型训练和预测。在案例中,我们将使用一组客服的接线量数据作为实验对象。通过分析这些数据,我们将探索数据的特征和规律,进行平稳性检验和差分操作,然后通过自相关和偏自相关图来选择合适的ARIMA模型参数。RIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。在本篇博客中,我们将深入探讨ARIMA模型的实战应用,并通过Python进行模型的实现和分析。 我们的实战案例基于一组客服接线量的数据。首先,我们对数据进行了详细的探索性分析,以揭示其内在的时间序列特性。对于非平稳的数据,我们使用差分操作使其平稳,以便进行后续的建模和预测。 在模型参数的选择上,我们使用了自相关图(ACF)和偏自相关图(PACF)来帮助确定ARIMA
2024-04-16 10:53:43 5KB 机器学习 ARIMA
1
自定义时间轴:包含5个部分:动作图元、事件图元、事件文本图元(只要有事件就会一直显示左侧,包括移动下面进度条时)、文件结束标志图元、时间轴图元、当前时间位置图元。
2024-04-15 15:06:59 8KB
1
// 功能描述 : 智能台灯设计与制作 // 说明:智能台灯具有姿势监督、调光、节能、时间提醒等功能 // ---------------------------------------------------------------- 蜂鸣器模块:PB5 LED模块:PC13 OLED 屏幕: GND 电源地 VCC 3.3v电源 D0 PA5(SCL) D1 PA7(SDA) RES PB0 DS、CS——GND 按键模块: KEY1->PB12 KEY2->PB13 KEY3->PB14 KEY4->PB15 光敏电阻:AO->PA1 温湿度模块:DAT->PA11 超声波测距模块:tring->PB11 echo->PB10 DS1302时钟模块:IO->PB7 SCK->PB8 RST->PB9
2024-04-14 19:58:59 8.43MB stm32
1
光子工具-用于分析单光子测量数据的工具 photon-tools是用于处理和分析光子时间戳数据(特别是来自FRET和FCS实验) photon-tools的集合。 安装:两分钟版本 要在Ubuntu上安装photon-tools , $ sudo apt-get install python3 python3-numpy python3-scipy python3-matplotlib \ python3-setuptools build-essential cython3 libboost-all-dev $ git clone git://github.com/bgamari/photon-tools.git $ cd photon-tools $ ./install.sh 安装:未删节版 其中许多实用程序都是用Python编写的,通常需要python 3或更高版本以及n
2024-04-13 15:10:34 362KB Python
1
KITTI数据集通过evo转换成tum数据,对应的结果,以及xx.txt的poses文件和times.txt的时间戳文件
2024-04-11 14:29:42 2.98MB 数据集 kitti
1
matlab中频谱与功率谱密度代码探索高能天体物理学中的时间序列数据 该存储库托管资源支持特别会议,该会议是由汤姆·洛雷多(Tom Loredo)和杰夫·斯卡格尔(Jeff Scargle)在2019年3月18日在加利福尼亚州蒙特雷举行的AAS高能天体物理学分部第17部门会议上举行的,该会议探讨了高能天体物理学中的时间序列数据。 要将资料复制到您的计算机上,建议您使用“下载ZIP” (在GitHub上),而不要克隆存储库。 这将使您免于下载旧版本的PDF文件,不幸的是,Git确实注意到该版本在回购历史记录中有效地进行了处理。 概述 该会议包括三个演示文稿(幻灯片以PDF文件的形式在此处提供): 会话介绍/ Python和MATLAB中的时间序列探索(Tom Loredo和Jeff Scargle) 使用Stingray进行时间序列探索:用于X射线数据的光谱定时分析的新工具(Abigail Stevens) 使用CARMA模型对AGN的时间变异性进行建模(Malgorzata Sobolewska) 演示文稿的完整摘要显示在下面。 指向此存储库中未包含的会话内容的链接: R Shiny应
2024-04-10 21:01:58 4.65MB 系统开源
1
一个秒和时间互相转换的模板,可以简单修改变量直接使用! 文件中包含VScode配置C环境文件,需根据自己电脑进行更改。更改方法参考:https://blog.csdn.net/studyingdda/article/details/126184241?spm=1001.2014.3001.5502
2024-04-09 10:37:00 23KB
1
时间敏感网络(TSN)相关的协议标准,包括IEEE802.1Q的协议文档以及相关补充子协议,如Qav、Qbv、CB、Qat、Qbu等。
2024-04-08 14:54:28 39.49MB 时间敏感网络 IEEE802.1
1
时间序列预测没有任何问题-完整的训练测试输出
2024-04-08 14:48:15 84.44MB
1
使用卷积加循环神经网络加注意力机制进行时间序列预测。 适用于不懂时间序列预测流程的研究小白,使用这个资源能够很好的理解时间序列预测的整个流程。熟悉数据在网络中的形状变换。代码拿来修改一下数据集路径和些许参数即可运行。
2024-04-08 09:17:32 425KB lstm 数据集
1