机器学习数学基础:线性代数+微积分+概率统计+优化算法 机器学习作为现代科技的璀璨明珠,正在逐渐改变我们的生活。而在这背后,数学扮演着至关重要的角色。线性代数、微积分、概率统计和优化算法,这四大数学领域为机器学习提供了坚实的理论基础。 线性代数是机器学习中的基础语言。矩阵和向量作为线性代数中的核心概念,是数据表示和计算的基础。在机器学习中,我们经常需要将数据转化为矩阵形式,通过矩阵运算提取数据的特征。特征提取是机器学习模型训练的关键步骤,而线性代数则为我们提供了高效处理数据的工具。 微积分则是机器学习模型优化的得力助手。在机器学习中,我们通常需要找到一种模型,使得它在给定数据集上的性能达到最优。这就需要我们对模型进行求导,分析模型参数对性能的影响,进而调整参数以优化模型。微积分中的导数概念为我们提供了分析模型性能变化的方法,帮助我们找到最优的模型参数。 概率统计则是机器学习数据处理和模型评估的基石。在机器学习中,数据往往带有噪声和不确定性,而概率统计可以帮助我们评估数据的分布和特征,进而构建更加稳健的模型。同时,概率统计也为我们提供了模型评估的方法,通过计算模型的准确率、召回率 ### 机器学习数学基础详解 #### 一、线性代数基础 **1.1 向量和矩阵** - **1.1.1 标量、向量、矩阵、张量之间的联系** 标量、向量、矩阵和张量是线性代数中的基本概念,它们之间存在着紧密的联系。 - **标量(Scalar)**:一个单独的数字,没有方向。 - **向量(Vector)**:一组有序排列的数字,通常用来表示方向和大小。 - **矩阵(Matrix)**:一个二维数组,由行和列组成的数据结构。 - **张量(Tensor)**:一个更高维度的数组,它可以是标量(0维)、向量(1维)、矩阵(2维)或更高维度的数组。 **联系**:标量可以视为0维张量;向量是一维张量;矩阵是二维张量;更高维度的数组称为张量。 - **1.1.2 张量与矩阵的区别** - **代数角度**:矩阵是二维张量,而更高维度的张量则包含了更复杂的数据结构。 - **几何角度**:矩阵和向量都是不变的几何量,不随参照系的变化而变化。张量也可以用矩阵形式来表达,但其可以扩展到更高的维度。 - **1.1.3 矩阵和向量相乘结果** 当一个矩阵与一个向量相乘时,可以理解为矩阵的每一行与向量相乘的结果构成新的向量。 - 例如,如果有一个$m \times n$的矩阵$A$与一个$n \times 1$的向量$x$相乘,结果将是一个$m \times 1$的向量$y$,其中每个元素$y_i = \sum_{j=1}^{n} a_{ij}x_j$。 - **1.1.4 向量和矩阵的范数归纳** 向量的范数是衡量向量大小的一种标准。 - **向量的1范数**:向量各分量的绝对值之和。 - 对于向量$\vec{x} = (x_1, x_2, ..., x_n)$,其1范数定义为$||\vec{x}||_1 = |x_1| + |x_2| + ... + |x_n|$。 - **向量的2范数**:也称为欧几里得范数,是各分量平方和的开方。 - $||\vec{x}||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$。 - **向量的无穷范数**:向量各分量的最大绝对值。 - $||\vec{x}||_\infty = \max(|x_1|, |x_2|, ..., |x_n|)$。 **1.2 导数和偏导数** - **1.2.1 导数偏导计算** 导数用于描述函数在某一点处的变化率,而偏导数则是多元函数关于其中一个自变量的变化率。 - **1.2.2 导数和偏导数有什么区别?** - **导数**:对于单一自变量的函数$f(x)$,导数$f'(x)$描述了该函数在$x$点处的切线斜率。 - **偏导数**:对于多变量函数$f(x_1, x_2, ..., x_n)$,偏导数$\frac{\partial f}{\partial x_i}$描述了当保持其他变量不变时,$f$关于$x_i$的变化率。 **1.3 特征值和特征向量** - **1.3.1 特征值分解与特征向量** 特征值和特征向量是线性代数中的重要概念,用于理解和简化矩阵。 - **特征值**:如果存在非零向量$\vec{v}$使得$A\vec{v} = \lambda\vec{v}$,那么$\lambda$就是矩阵$A$的一个特征值。 - **特征向量**:满足上述等式的非零向量$\vec{v}$。 - **1.3.2 奇异值与特征值的关系** - **奇异值**:对于任何矩阵$A$,其奇异值是$A^\top A$(或$AA^\top$)的特征值的平方根。 - **关系**:奇异值和特征值在特定情况下相同,尤其是在正交矩阵和对称矩阵中。 #### 二、微积分基础 - **1.2 导数和偏导数**(已在上文提到) - **1.3 特征值和特征向量**(已在上文提到) #### 三、概率统计基础 **1.4 概率分布与随机变量** - **1.4.1 机器学习为什么要使用概率** 在机器学习中,概率用于描述数据的不确定性,并提供了一种量化方式来预测未来事件的可能性。 - **1.4.2 变量与随机变量有什么区别** - **变量**:可以取多种不同值的量。 - **随机变量**:变量的一种特殊类型,其值是根据某个概率分布随机确定的。 - **1.4.3 随机变量与概率分布的联系** - 随机变量的每个可能值都对应一个概率,这些概率构成了随机变量的概率分布。 - **1.4.4 离散型随机变量和概率质量函数** - **离散型随机变量**:只能取有限个或可数无限个值的随机变量。 - **概率质量函数**:描述离散型随机变量各个值的概率。 - **1.4.5 连续型随机变量和概率密度函数** - **连续型随机变量**:可以取区间内的任意值的随机变量。 - **概率密度函数**:描述连续型随机变量在某一区间的概率密度。 - **1.4.6 举例理解条件概率** - 条件概率$P(A|B)$表示在事件$B$已经发生的条件下,事件$A$发生的概率。 - 例如,假设在一个班级中,$P(\text{女生}) = 0.5$,$P(\text{女生|戴眼镜}) = 0.6$,意味着在戴眼镜的学生中,60%是女生。 - **1.4.7 联合概率与边缘概率联系区别** - **联合概率**:两个事件同时发生的概率。 - **边缘概率**:单个事件发生的概率。 - **联系**:联合概率可以通过边缘概率和条件概率计算得出。 - **1.4.8 条件概率的链式法则** - 条件概率的链式法则描述了如何通过一系列条件概率来计算联合概率。 - 例如,$P(A,B,C) = P(C|A,B)P(B|A)P(A)$。 - **1.4.9 独立性和条件独立性** - **独立性**:两个事件$A$和$B$独立,如果$P(A|B) = P(A)$且$P(B|A) = P(B)$。 - **条件独立性**:事件$A$和$B$在已知事件$C$的情况下条件独立,如果$P(A|B,C) = P(A|C)$。 **1.5 常见概率分布** - **1.5.1 Bernoulli分布** - 描述只有两种可能结果的随机试验(如成功或失败)的概率分布。 - 参数$p$表示成功的概率,失败的概率为$1-p$。 - **1.5.2 高斯分布** - 又称正态分布,是一种非常常见的连续概率分布。 - 参数$\mu$代表均值,$\sigma^2$代表方差。 - **1.5.3 何时采用正态分布** - 正态分布广泛应用于自然和社会科学领域,特别是在中心极限定理的支持下,很多随机变量可以近似为正态分布。 - **1.5.4 指数分布** - 描述事件发生的时间间隔的分布。 - 参数$\lambda$表示事件发生的平均频率。 - **1.5.5 Laplace 分布** - 也是一种连续概率分布,具有比高斯分布更重的尾部。 - 参数$\mu$代表均值,$b$代表尺度参数。 - **1.5.6 Dirac分布和经验分布** - **Dirac分布**:一个概率质量集中在单个点的分布。 - **经验分布**:基于观测数据的分布,反映了数据的真实概率分布情况。 **1.6 期望、方差、协方差、相关系数** - **1.6.1 期望** - 期望是对随机变量取值的加权平均。 - 对于离散型随机变量,期望定义为$E[X] = \sum x_i p(x_i)$。 - **1.6.2 方差** - 方差衡量随机变量与其期望值之间的偏差程度。 - 定义为$Var(X) = E[(X-E[X])^2]$。 - **1.6.3 协方差** - 协方差描述两个随机变量之间的线性相关性。 - 定义为$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$。 - **1.6.4 相关系数** - 相关系数是标准化后的协方差,用于衡量两个变量的相关强度。 - 定义为$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$,其中$\sigma_X$和$\sigma_Y$分别是$X$和$Y$的标准差。 通过以上详细的介绍,我们可以看到,线性代数、微积分、概率统计和优化算法在机器学习中的应用极为广泛,它们为机器学习提供了坚实的数学基础。掌握这些基础知识对于深入理解机器学习算法至关重要。
2024-08-23 11:30:23 852KB 机器学习 线性代数
1
标题中的“火焰+烟雾检测数据集+标签-01”表明这是一个专门针对火焰和烟雾检测训练的数据集,其中包含了图像以及相应的标签信息。这个数据集是深度学习领域的一个重要资源,尤其对于目标检测任务而言,它是模型训练的基础。 在描述中提到,该数据集包含2500张图像,这些图像旨在帮助模型识别和区分火焰与烟雾。数据集中的标签是以JSON格式提供的,这意味着每张图片都有一个对应的JSON文件,详细描述了图像中火焰或烟雾的位置和其他相关信息。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也方便机器解析和生成,是处理结构化数据的理想选择。 标签中提到了“深度学习”、“目标检测”和“YOLO”,这暗示了该数据集可以用于训练基于深度学习的目标检测模型,特别是YOLO(You Only Look Once)算法。YOLO是一种实时目标检测系统,它的优势在于速度快、效率高,能够在一帧视频中一次性完成检测,非常适合实时监控场景下的火焰和烟雾检测。 在深度学习领域,目标检测是计算机视觉的一个重要子领域,它旨在识别并定位图像中的特定对象。对于火焰和烟雾检测,目标检测可以帮助早期发现火灾隐患,从而及时采取措施防止灾难发生。YOLO的工作原理是将图像分割成多个小网格,并预测每个网格内是否存在目标以及目标的类别和边界框。通过优化网络参数,模型能够学习到火焰和烟雾的特征,提高检测精度。 在实际应用中,这样的数据集可以被用于训练和验证深度学习模型,例如使用YOLOv3或更新的版本。训练过程通常包括前向传播、反向传播和优化,以最小化损失函数,从而提高模型的预测能力。数据集的大小(2500张图片)虽然相对较小,但足够用于初步的模型训练和验证,特别是在数据增强技术的帮助下,如翻转、缩放、裁剪等,可以有效地扩充数据集,增加模型的泛化能力。 总结来说,这个“火焰+烟雾检测数据集+标签-01”是一个适用于深度学习目标检测任务的资源,特别是针对YOLO框架。它包含的2500张图片和JSON标签信息为训练和评估模型提供了基础,对于防火安全监测系统开发或相关研究具有重要意义。通过利用该数据集,开发者和研究人员可以构建更准确、快速的火焰和烟雾检测系统,提升公共安全水平。
2024-08-23 10:26:39 222.87MB 深度学习 目标检测 YOLO
1
《清风汇编-易语言汇编学习》资料包是一个专注于易语言与汇编结合的学习资源,主要针对游戏辅助开发领域。在这个压缩包中,核心文件是“清风汇编.ec”,这很可能是易语言的一个模块,用于扩展其功能,以便在编写游戏辅助程序时能更深入地操作底层系统。 易语言是一种中国本土开发的编程语言,它的设计目标是让编程变得简单、直观,特别适合初学者。易语言采用了接近自然语言的语法,降低了编程的入门难度。然而,在处理高性能或低级操作时,如游戏辅助开发,易语言可能显得力不从心,这就需要结合汇编语言来实现。 汇编语言是一种低级编程语言,它是机器语言的一种符号化表示,每个指令都对应着计算机硬件可以直接理解的机器码。使用汇编语言可以更直接地控制硬件,提高程序运行效率,尤其是在处理游戏中的高速逻辑和内存操作时,汇编语言有着无可比拟的优势。 “清风模块”可能是易语言的一个第三方模块,为用户提供了在易语言中使用汇编语言的功能。这种模块通常包含了汇编语言编写的函数或者子程序,用户可以通过易语言的接口调用这些功能,从而在保持易语言的高级抽象的同时,利用汇编语言的强大性能。 在游戏辅助开发中,汇编语言的应用主要包括以下几个方面: 1. **内存操作**:游戏辅助工具常常需要读取或修改游戏内存中的数据,如角色的生命值、经验值等,汇编语言可以直接访问内存地址,实现精准的数据修改。 2. **钩子技术**:通过汇编实现函数钩子,可以拦截游戏的特定函数调用,插入自定义代码,达到改变游戏行为的目的。 3. **速度优化**:对于计算密集型的代码段,如碰撞检测、AI算法,汇编可以编写出高效且运行速度快的代码。 4. **系统调用**:汇编语言可以方便地调用操作系统提供的底层服务,实现如键盘鼠标模拟、窗口管理等高级功能。 学习汇编语言与易语言的结合,可以帮助开发者更好地理解计算机底层运作,提升游戏辅助开发的能力。然而,需要注意的是,游戏辅助开发可能涉及到版权和法律问题,应当遵循合法合规的原则,尊重并保护游戏开发商的权益。 《清风汇编-易语言汇编学习》资料包是一个面向游戏辅助开发的学习资源,它将易语言的易用性与汇编语言的高效性相结合,为开发者提供了一条深入学习编程和游戏辅助开发的途径。通过这个资源,开发者可以提升对底层系统操作的理解,掌握编写高性能代码的技术,但同时也需意识到在实际应用中应遵守的道德和法律规定。
1
介绍统计机器学习的经典教科书, 2009年版本
2024-08-20 18:20:19 11.88MB 机器学习
1
### USB协议学习总结 #### 一、USB的基本概念 ##### 1.1 位的传输顺序 在USB通信中,数据传输遵循一个特定的规则,即先发送最低有效位(Least Significant Bit, LSB),后发送最高有效位(Most Significant Bit, MSB)。这种传输方式有助于确保数据的完整性,并简化了数据的解析过程。 ##### 1.2 包的分类 在USB通信中,所有的数据传输都以“包”为单位进行。不同类型的包具有不同的结构和功能: - **标记符包**:用于标识后续的数据包类型,例如令牌包可以标识数据包是属于批量传输还是控制传输等。 - **帧开始包**:标识USB总线的一个新帧的开始,用于时间同步。 - **数据包**:包含实际的有效载荷数据。 - **状态包**:通常用于确认数据包是否被正确接收或告知错误状态。 ##### 1.3 事务的类型 根据不同的应用场景,USB定义了几种主要的事务类型: - **批量事务**:主要用于高速数据传输,如文件传输或打印数据。它包括标记符包、数据包和状态包。 - **控制事务**:用于设置或获取USB设备的配置信息。通常包含标记符包和状态包。 - **中断事务**:用于处理USB设备的中断请求,如键盘按键事件。它同样包含标记符包和状态包。 - **同步事务**:主要用于音频流传输等需要精确同步的应用。这类事务包含标记符包和数据包,但没有状态包,以确保数据传输的实时性。 #### 二、USB协议结构 ##### 2.1 USB的拓扑结构 USB系统采用一种树形拓扑结构,每个USB主机可以支持多个USB设备通过集线器连接。理论上,一个USB主机可以支持多达127个USB设备。这种结构允许USB设备灵活地添加或移除而无需重启整个系统。 ##### 2.2 设备与主机间的通信流程 当一个USB设备连接到主机时,其工作状态会经历以下几个阶段: 1. **连接状态**:当USB设备物理连接到USB总线时,即进入连接状态。 2. **上电状态**:在此状态下,USB总线开始为USB设备供电。 3. **默认状态**:上电后,USB设备进入默认状态,此时它通过默认地址与主机通信。主机通过这一过程获取USB设备的基本信息。 4. **配置状态**:主机根据从USB设备接收到的信息对其进行配置,如分配唯一的地址和其他必要参数。 5. **通讯状态**:配置完成后,USB设备通过分配的地址与主机进行数据交换。 6. **挂起状态**:在没有数据交换的情况下,为了节省能源,USB设备会被置于挂起状态。 ### 总结 USB协议作为现代计算机系统中最常用的接口之一,在各种场景下都有着广泛的应用。通过理解USB协议的基本概念、包的类型、事务分类以及设备与主机之间的通信流程,可以更好地掌握如何利用USB接口进行高效的数据交换。无论是对于开发者还是最终用户而言,深入理解这些细节都将是非常有价值的。
2024-08-18 16:26:49 26KB USB协议学习总结
1
2024亚太杯数学建模论文洪水的频率和严重程度与人口增长趋势相近。迅猛的人口增长,扩大耕地,围湖造田,乱砍滥伐等人为破坏不断地改变着地表状态,改变了汇流条件,加剧了洪灾程度。2023 年,全球洪水造成了数十亿美元的经济损失。因此构建与研究洪水事件预测发生模型显得尤为重要,本文基于机器学习回归,通过对比分析,构建了预测效果较好的洪水概率预测模型,为灾害防治起到一定贡献作用。 ### 2024亚太杯数学建模B题:基于机器学习回归的洪水预测模型研究 #### 一、研究背景及目的 随着全球人口的快速增长以及人类活动对自然环境的影响日益加剧,洪水的发生频率和严重程度也在逐年上升。据文中描述,2023年全球因洪水造成的经济损失高达数十亿美元。为了有效减轻洪水灾害带来的负面影响,构建一个能够准确预测洪水事件发生的模型变得至关重要。本研究旨在通过机器学习回归技术,构建并优化洪水预测模型,以期提高灾害预防和应对能力。 #### 二、研究方法概述 1. **相关性分析**:通过计算皮尔逊相关系数来评估各个指标与洪水发生之间的关系强度。此步骤帮助确定哪些因素对洪水发生的可能性有显著影响。 - **高相关性指标**:森林砍伐、滑坡、气候变化、人口得分、淤积、河流管理、地形排水、大坝质量和基础设施恶化。 - **低相关性指标**:季风强度、海岸脆弱性、侵蚀、排水系统、规划不足、城市化、流域、政策因素、无效防灾、农业实践、湿地损失。 2. **K聚类分析**:用于将洪水事件按照风险等级分为高中低三个类别,并通过CRITIC权重分析法确定每个指标的权重。随后,建立了有序逻辑回归模型,并通过准确率、召回率等指标对其性能进行了评估。 3. **模型对比与优化**:在问题三中,通过对问题二中建立的有序逻辑回归模型进行进一步分析,剔除了两个对结果贡献较小的指标,选择了五个关键指标(河流管理、气候变化、淤积、基础设施恶化、人口得分),构建了三种不同的模型(线性回归、梯度下降法线性回归、梯度提升树),并对这些模型进行了对比分析,最终选择了性能最优的梯度提升树模型。 4. **预测与验证**:利用问题三中选定的最佳模型对预测数据集进行洪水发生概率的预测,并通过S-W检验和K-S检验验证了预测结果的准确性。 #### 三、具体实施步骤 1. **问题一**:分析了各个指标与洪水发生的相关性,并绘制了热力图和柱状图以直观展示结果。 2. **问题二**: - 使用K聚类分析将洪水概率分为高中低三个等级。 - 应用CRITIC权重分析法计算各指标的权重。 - 基于上述结果构建了有序逻辑回归模型,并通过准确率、召回率等指标评估模型性能。 3. **问题三**: - 在问题二的基础上进一步优化模型,选择五个关键指标构建三种模型(线性回归、梯度下降法线性回归、梯度提升树)。 - 通过模型对比分析选择了梯度提升树作为最佳模型。 4. **问题四**:利用问题三中的最佳模型进行实际数据预测,并验证了预测结果的有效性和可靠性。 #### 四、结论与展望 通过上述研究,本文成功构建了一个基于机器学习回归的洪水预测模型。该模型不仅能够有效地预测洪水发生的概率,而且还可以为相关部门提供科学依据,以便采取更加有效的防灾减灾措施。未来的研究可以进一步探索更多影响洪水的因素,并尝试使用更先进的机器学习算法来提高预测精度。此外,还可以考虑将该模型应用于实际场景中,以评估其在真实世界中的应用效果。
2024-08-17 19:01:27 431KB 机器学习
1
深度学习是一种人工智能领域的核心技术,它通过模仿人脑神经网络的工作方式来解决复杂问题,尤其在图像识别、自然语言处理和声音识别等领域表现出强大的能力。在这个项目中,我们重点关注的是利用深度学习进行二维码识别,这是一个实际应用广泛的任务,比如在物流、广告、产品追踪等领域。 "二维码数据集"是训练深度学习模型的关键。一个数据集是模型学习的基础,它包含了大量的训练样本,这些样本通常由真实的二维码图片和对应的标签(即每个二维码的含义)组成。在本案例中,数据集可能已经被标注为VOC格式,这是一种常用的目标检测数据集标注格式,包括边界框信息和类别标签。 "二维码识别"是这个项目的核心任务。二维码(Quick Response Code)是一种二维条形码,能够存储各种类型的信息,如文本、URL、联系人信息等。识别二维码的过程涉及到对图像的预处理、特征提取、分类器的运用等步骤。使用深度学习,尤其是卷积神经网络(CNN),可以自动学习二维码的特征并进行识别,提高了识别的准确性和效率。 "yolov5自定义数据集"指的是使用YOLOv5模型进行训练,YOLO(You Only Look Once)是一种实时目标检测系统,因其快速且准确的性能而广受欢迎。YOLOv5是YOLO系列的最新版本,改进了前几代的性能,包括更快的训练速度和更高的精度。自定义数据集意味着我们将使用提供的二维码数据集来替代原版模型的训练数据,使模型能适应特定的二维码识别任务。 在项目中,有两个关键脚本:"voc_label.py" 和 "split_train_val.py"。"voc_label.py" 可能是用来将VOC格式的数据转换为YOLO格式的工具,因为YOLO模型通常需要YOLO格式的标注数据,这种格式包含边界框坐标和类别信息。"split_train_val.py" 则可能用于将数据集分割成训练集和验证集,这是深度学习模型训练中的标准步骤,训练集用于训练模型,验证集用于评估模型在未见过的数据上的表现。 "Annotations" 文件夹很可能包含了VOC数据集中所有的标注信息,每张图片对应一个XML文件,详细描述了图像中的二维码位置和类别。而"images" 文件夹则存放着实际的二维码图片,这些图片将被用于训练和测试模型。 这个项目旨在利用深度学习,特别是YOLOv5框架,对二维码进行识别。通过创建和训练自定义数据集,我们可以构建一个专门针对二维码的高效识别系统。从数据预处理到模型训练,再到评估和优化,整个过程都需要严谨的工程实践和理论知识,以确保模型在实际应用中的效果。
2024-08-16 15:02:21 85.36MB 深度学习 数据集
1
【标题】"15pB学习项目安全卫士.rar" 提供了一个学习项目,专注于安全卫士的开发,其中可能涵盖了32位系统的任务管理器内联HOOK技术和云杀毒与本地杀毒的实现。这个项目的目标是让学生或开发者了解如何在实际应用中保护系统安全。 【描述】"内联HOOK32位任务管理器 简单云杀毒 本地杀毒" 描述了项目的主要技术点。内联HOOK是一种常用的技术,它允许程序员在不修改原始代码的情况下,插入自定义代码来改变程序的行为。在32位任务管理器中使用内联HOOK,可能是为了监控或控制进程,提升任务管理的效能或安全。同时,项目也涉及到两种杀毒机制:简单云杀毒和本地杀毒。云杀毒利用云端的大数据和算法,实时更新病毒库,检测并清除潜在威胁;而本地杀毒则是在设备本地进行病毒扫描和清理,即使在无网络连接的情况下也能提供防护。 【标签】"MFC" 指的是Microsoft Foundation Classes,这是一个C++库,用于构建Windows应用程序。MFC提供了许多面向对象的类,简化了Windows API的使用,使得开发者可以更快速、更容易地开发用户界面和系统级功能,如在本项目中可能用到的任务管理器界面和系统交互。 【压缩包子文件的文件名称列表】"50期石贤彬安全卫士" 暗示这是一个系列教程的第50期,由名为石贤彬的专家或讲师提供。这可能包括源代码、文档、教程视频或讲解笔记,帮助学习者逐步理解并实现安全卫士的各项功能。 在项目中,学习者可能会接触到以下知识点: 1. **内联HOOK原理**:理解HOOK的工作机制,包括API HOOK、VMT HOOK等,并学习如何在32位环境下设置和移除HOOK。 2. **MFC应用开发**:学习MFC的基本结构,如对话框、控件、消息处理等,以及如何创建和管理窗口及线程。 3. **任务管理器接口**:探索Windows任务管理器的内部工作,学习如何通过API与之交互,获取进程信息或进行进程控制。 4. **云杀毒技术**:了解如何实现与云端的通信,获取和应用病毒定义,以及设计实时扫描和更新机制。 5. **本地杀毒引擎**:学习病毒查杀算法,如何实现文件扫描、内存扫描,以及隔离和清除病毒文件。 6. **安全编程实践**:理解安全编程原则,防止缓冲区溢出、注入攻击等常见安全问题。 7. **软件设计与架构**:设计一个完整的安全卫士系统,包括模块划分、数据结构设计和错误处理。 8. **调试与测试**:学习如何调试代码,找出潜在问题,以及如何进行单元测试和集成测试以确保软件质量。 通过这个项目,学习者不仅可以深入理解底层操作系统的工作,还能掌握安全软件的开发技能,为未来从事相关领域的开发工作打下坚实基础。
2024-08-14 18:24:55 35.54MB
1
基于粒子群算法(PSO)优化混合核极限学习机HKELM回归预测, PSO-HKELM数据回归预测,多变量输入模型。 优化参数为HKELM的正则化系数、核参数、核权重系数。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-08-14 16:10:01 36KB
1
分享视频教程——《深度强化学习极简入门与Pytorch实战》,视频+源码+课件下载! 强化学习作为行为主义人工智能学派的典型代表,近几年与深度神经网络相结合形成的深度强化学习(DRL),达到了令人惊叹的智能水平:2015年DQN智能体玩视频游戏超越人类水平,2017年基于PPO算法的Open Five在《Dota》游戏中战胜人类顶尖职业玩家,2019年基于DRL的AlphaStar在《星际争霸II》游戏中战胜人类顶尖职业玩家。深度强化学习为通用人工智能(AGI)带来了新的希望! 然而,深度强化学习理论较为抽象,学习曲线陡峭,需要大量的时间和精力才能入门,很多硕士和博士往往浪费了大量时间在入门阶段,耽误了学习和科研进度。 《深度强化学习极简入门与Pytorch实战》课程的特点之一:精炼而不失重点。本门课程深入浅出,根据多年深度强化学习科研和项目实践经验,选取了强化学习入门所必须掌握的知识点,为学员构建一个最小而必要的强化学习知识体系,为后续的研究和论文专业以及工程实践打下坚实的基础。 《深度强化学习极简入门与Pytorch实战》课程的特点二:强调实战。为每个知识点精心设计设计编
2024-08-13 23:14:35 2KB pytorch 强化学习
1