这是非线性降维高斯过程潜变量模型 (GPLVM) 和威布尔比例风险模型 (WPHM) 的组合。 它适用于具有事件发生时间测量的高维数据。 也就是说,具有高维协变量的生存分析。 这项工作基于以下出版物: http : //arxiv.org/abs/1406.0812 。 如果有任何问题,请随时与我联系。
2022-03-24 16:53:25 728KB matlab
1
PCA主成分分析MATLAB实现代码
2022-03-24 07:30:51 2KB pca降维
1
研究平面轮廓局部支撑域上的协方差矩阵,通过对图像协方差矩阵的特征值和特征向量的分析,以V角点模型为例,证明了协方差矩阵行列式在角点位置有唯一的极值响应。同时,为了有效地融合各个尺度信息,采用多尺度乘积方法来增强角点响应的幅度,抑制非角点或噪声的幅度。基于此,提出以多尺度乘积的协方差矩阵行列式作为角点响应函数的角点检测算法。实验结果表明:通过比较经典的角点检测算法,算法具有很好的定位、抗噪及旋转和尺度不变性。
2022-03-23 10:50:06 617KB 论文研究
1
核主元分析KPCA的降维特征提取以及故障检测应用-data.rar 本帖最后由 iqiukp 于 2018-11-9 15:02 编辑      核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取) (2)SPE和T2统计量及其控制限的计算 (3)故障检测 参考文献: Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59: 223-234. 1. KPCA的建模过程(故障检测): (1)获取训练数据(工业过程数据需要进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)特征值分解 (5)特征向量的标准化处理 (6)主元个数的选取 (7)计算非线性主成分(即降维结果或者特征提取结果) (8)SPE和T2统计量的控制限计算 function model = kpca_train % DESCRIPTION % Kernel principal component analysis % %       mappedX = kpca_train % % INPUT %   X            Training samples %                N: number of samples %                d: number of features %   options      Parameters setting % % OUTPUT %   model        KPCA model % % % Created on 9th November, 2018, by Kepeng Qiu. % number of training samples L = size; % Compute the kernel matrix K = computeKM; % Centralize the kernel matrix unit = ones/L; K_c = K-unit*K-K*unit unit*K*unit; % Solve the eigenvalue problem [V,D] = eigs; lambda = diag; % Normalize the eigenvalue V_s = V ./ sqrt'; % Compute the numbers of principal component % Extract the nonlinear component if options.type == 1 % fault detection     dims = find) >= 0.85,1, 'first'); else     dims = options.dims; end mappedX  = K_c* V_s ; % Store the results model.mappedX =  mappedX ; model.V_s = V_s; model.lambda = lambda; model.K_c = K_c; model.L = L; model.dims = dims; model.X = X; model.K = K; model.unit = unit; model.sigma = options.sigma; % Compute the threshold model.beta = options.beta;% corresponding probabilities [SPE_limit,T2_limit] = comtupeLimit; model.SPE_limit = SPE_limit; model.T2_limit = T2_limit; end复制代码2. KPCA的测试过程: (1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)计算非线性主成分(即降维结果或者特征提取结果) (5)SPE和T2统计量的计算 function [SPE,T2,mappedY] = kpca_test % DESCRIPTION % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y % %       [SPE,T2,mappedY] = kpca_test % % INPUT %   model       KPCA model %   Y           test data % % OUTPUT %   SPE         the SPE statistic %   T2          the T2 statistic %   mappedY     the nonlinear component of Y % % Created on 9th November, 2018, by Kepeng Qiu. % Compute Hotelling's T2 statistic % T2 = diag)*model.mappedX'); % the number of test samples L = size; % Compute the kernel matrix Kt = computeKM; % Centralize the kernel matrix unit = ones/model.L; Kt_c = Kt-unit*model.K-Kt*model.unit unit*model.K*model.unit; % Extract the nonlinear component mappedY = Kt_c*model.V_s; % Compute Hotelling's T2 statistic T2 = diag)*mappedY'); % Compute the squared prediction error SPE = sum.^2,2)-sum; end复制代码 3. demo1: 降维、特征提取 源代码 % Demo1: dimensionality reduction or feature extraction % ---------------------------------------------------------------------% clc clear all close all addpath) % 4 circles load circledata % X = circledata; for i = 1:4     scatter:250*i,1),X:250*i,2))     hold on end % Parameters setting options.sigma = 5;   % kernel width options.dims  = 2;   % output dimension options.type  = 0;   % 0:dimensionality reduction or feature extraction                      % 1:fault detection options.beta  = 0.9; % corresponding probabilities options.cpc  = 0.85; % Principal contribution rate % Train KPCA model model = kpca_train; figure for i = 1:4     scatter:250*i,1), ...         model.mappedX:250*i,2))     hold on end 复制代码(2)结果 (分别为原图和特征提取后的图) demo1-1.png demo1-2.png 4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果) (1)源代码 % Demo2: Fault detection % X: training samples % Y: test samples % Improve the performance of fault detection by adjusting parameters % 1. options.sigma = 16;   % kernel width % 2. options.beta          % corresponding probabilities % 3. options.cpc  ;        % principal contribution rate % ---------------------------------------------------------------------% clc clear all close all addpath) % X = rand; Y = rand; Y = rand 3; Y = rand*3; % Normalization % mu = mean; % st = std; % X = zscore; % Y = bsxfun,st); % Parameters setting options.sigma = 16;   % kernel width options.dims  = 2;   % output dimension options.type  = 1;   % 0:dimensionality reduction or feature extraction                      % 1:fault detection options.beta  = 0.9; % corresponding probabilities options.cpc  = 0.85; % principal contribution rate % Train KPCA model model = kpca_train; % Test a new sample Y [SPE,T2,mappedY] = kpca_test; % Plot the result plotResult; plotResult; 复制代码(2)结果(分别是SPE统计量和T2统计量的结果图) demo2-1.png demo2-2.png    附件是基于KPCA的降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。 Kernel Principal Component Analysis .zip KPCA
2022-03-22 10:16:23 184KB matlab
1
提出一种机载雷达杂波抑制的级联降维空时自适应算法,即,先对全空时两维接收数据进行预滤波处理,将杂波局域化,降低杂波自由度;然后对预处理输出的信号的相关矩阵进行子阵划分,求解低维权向量,进一步降低运算量和采样要求。理论分析和实验仿真结果表明,所提算法具有良好的收敛性能和杂波抑制能力,并且对于阵元随机幅相误差和杂波起伏具有很好的容差能力。基于实测数据的实验验证了算法的有效性和稳健性。
1
3、Bartlett’s球度检验 以原有变量的相关系数矩阵为出发点,假设相关系数为单位矩阵,如果该检验对应的P值小于给定的显著性水平a,则应拒绝原假设,认为原有变量适合进行因子分析。 4、KMO检验 该统计量取值在0-1之间,越接近于1说明变量间的相关性越强,原有变量适合做因子分析。0.9以上表示非常合适;0.8-0.9表示合适;0.7-0.8表示一般;0.6-0.7表示尚可;0.5-0.6表示不太合适;0.5以下表示极不合适。
2022-03-18 21:57:41 602KB 因子分析 数据分析 降维
1
此代码计算对高光谱图像降维必不可少的最佳波段数。 该作品已作为计算机和信息科学通信 (CCIS) 的一部分出版,Springer,丛书第 1035 卷链接: https : //link.springer.com/chapter/10.1007/978-981-13-9181-1_26 引文:Gupta V.、Gupta SK、Shukla DP (2019) 使用光谱聚类为高光谱图像优化波段。 在:Santosh K., Hegadi R. (eds) 图像处理和模式识别的最新趋势。 RTIP2R 2018。计算机和信息科学通信,第 1035 卷。Springer,新加坡。 DOI: https : //doi.org/10.1007/978-981-13-9181-1_26
2022-03-16 22:24:03 10.68MB matlab
1
可直接解压运行,人脸识别PCA Matlab程序
2022-03-13 20:48:56 688.37MB 人脸识别 pca降维 matlab 机器学习
1
更新新闻!!! iLearnPlus - iFeature和iLearn的更新版本现已发布! (2021-02-28) iLearnPlus是第一个同时具有基于图形和基于Web的用户界面的机器学习平台,该平台可以构建自动机器学习管道,以使用核酸和蛋白质序列进行计算分析和预测。 iLearnPlus集成了21种机器学习算法(包括12种常规分类算法,2种整体学习框架和7种深度学习方法)和19种主要序列编码方案(总共147个特征描述符),数量超过了所有当前的Web服务器和独立服务器据我们所知,用于生物序列分析的工具。 此外,生物学家还可以使用iLearnPlus友好的GUI(图形用户界面)来顺利进行分析,与现有管道相比,显着提高了有效性和用户体验。 iLearnPlus是一个用于学术目的的开源平台,可从。 可从在线访问iLearnPlus-Basic模块。 iLearnPlus-基本模块界面:
2022-03-12 23:08:01 2.13MB Python
1
压缩包包含一个Qt工程,利用Opencv2自带的PCA类对图像数据进行降维,并显示出样本图像和协方差矩阵特征图像。
2022-03-12 15:15:22 1.23MB PCA 图像降维
1