主要介绍了解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-12-28 19:55:06 45KB pytorch GPU训练保存 GPU环境 加载出错
1
一、DistilBert for Chinese 海量中文预训练蒸馏Bert模型 拟于12月16日发布 target to release on Dec 16th. 拟发布内容 Contents: 1.1 可下载的蒸馏模型,已经训练过 a pretrained chinese DistilBert, others can use it directly or trained again on their own corpus; 1.2 可用于下游任务的例子和代码,包括3个ChineseGLUE(CLUE)的任务 fine tuning examples and codes using DistilBert on three ChineseGLUE(CLUE) tasks; 1.3 小模型基准测评 performance comparsion with albert_tiny, ernie
2021-12-15 22:16:28 1KB
1
Machine_Learning-Housing_grade_prediction_using_python 机器学习被广泛用于建立数据分析的预测模型。 数据集包含一个训练文件,我们使用该训练文件来训练算法以对测试文件进行预测。 该文件包含大约2500多个缺失值。 我们使用KNN插补来自动填充缺失的位置,以进行更好的预测。 用于对训练和测试数据集进行预测的模型是SVM。 使用线性核获得的模型的准确性约为88.6%,比rbf的准确性高23%。
2021-12-08 21:20:32 251KB Python
1
YOLOV4-Tiny:You Only Look Once-Tiny目标检测模型在Keras当中的实现 2021年2月7日更新: 仔细对照了darknet库的网络结构,发现P5_Upsample和feat1的顺序搞反了,已经调整,重新训练了权值,加入letterbox_image的选项,关闭letterbox_image后网络的map得到提升。 目录 性能情况 训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5 VOC07+12+COCO VOC-Test07 416x416 - 77.5 COCO-Train2017 COCO-Val2017 416x416 21.8 41.3 所需环境 tensorflow-gpu==1.13.1 keras==2.1.5 注意事项 代码中的yolov4_tiny_weights_coco.h5和yolov4
2021-12-08 20:24:45 5.32MB 附件源码 文章源码
1
PSPnet:Pyramid Scene Parsing Network语义分割模型在Pytorch当中的实现 目录 性能情况 训练数据集 权值文件名称 测试数据集 输入图片大小 mIOU VOC12+SBD VOC-Val12 473x473 68.59 VOC12+SBD VOC-Val12 473x473 81.44 所需环境 torch==1.2.0 注意事项 代码中的pspnet_mobilenetv2.pth和pspnet_resnet50.pth是基于VOC拓展数据集训练的。训练和预测时注意修改backbone。 文件下载 训练所需的pspnet_mobilenetv2.pth和pspnet_resnet50.pth可在百度网盘中下载。 链接: https://pan.baidu.com/s/1JX0BoAroPChBQrXYnybqzg 提取码: papc VOC拓展数据集
2021-12-08 16:21:46 9.17MB Python
1
vgg脸 使用PyTorch的人脸分类Python脚本 需要安装PyTorch 运行test.py文件 从获得的原始Caffe模型和测试图像/names.txt 从获得的.h5和
2021-12-04 11:12:15 78KB python face-recognition caffemodel pytorch-cnn
1
欺诈识别 使用RNN训练和测试模型以预测信用卡欺诈交易。 #如何使用模型: 从链接下载名为creditcard.csv的数据集。 下载python脚本欺诈_detection.py 将脚本和csv数据文件保存在同一文件夹中,否则在脚本文件的第13行中提及csv文件的路径 运行代码以查看培训和测试的准确性
2021-11-24 11:49:39 2.86MB Python
1
内眼深度学习 总览 这是一个深度学习工具箱,用于在医学图像(或更常见的是3D图像)上训练模型。 它与Azure中的云计算无缝集成。 在建模方面,此工具箱支持 细分模型 分类和回归模型 序列模型 分类,回归和序列模型可以仅将图像作为输入,或者将图像和非成像数据的组合作为输入来构建。 这支持了医疗数据的典型用例,在这些用例中,除了图像之外,还经常可以使用测量,生物标记或患者特征。 在用户方面,该工具箱专注于使机器学习团队能够实现更多目标。 它是云计算第一,并依靠来执行,簿记和可视化。 两者合计,得出: 可追溯性:AzureML保留已执行的所有实验的完整记录,包括代码快照。 标签会自动添加到实验中,以后可以帮助过滤和查找旧实验。 透明度:所有团队成员都可以访问彼此的实验和结果。 重现性:使用相同代码和数据的两次模型训练运行将得出完全相同的指标。 所有随机性源(例如多线程)均受到控制。 降低成本:使用AzureML,在开始培训工作时就请求所有计算(虚拟机,VM),并在最后释放它们。 闲置的虚拟机不会产生成本。 此外,Azure低优先级节点可用于进一步降低成本(便宜多达80%)。
2021-11-16 14:37:59 815KB deep-learning azure healthcare medical-imaging
1
DeepSpeech剧本 使用DeepSpeech训练语音识别模型的速成班。 快速链接 从这里开始。 本部分将设定您对DeepSpeech手册可以实现的目标的期望,以及开始训练自己的语音识别模型所需的先决条件。 了解了DeepSpeech Playbook可以实现的功能后,本节将概述DeepSpeech本身,其组成部分以及它与您过去使用过的其他语音识别引擎的不同之处。 之前,你可以训练一个模型,你需要收集和格式化数据的语料库。 本节概述了DeepSpeech所需的数据格式,并逐步介绍了从Common Voice准备数据集的示例。 如果您正在训练使用与英语不同的字母(例如带有变音符号的语言)的模型,那么您将需要修改alphabet.txt文件。 了解得分手的工作,以及如何建立自己的得分手。 了解DeepSpeech的声学模型和语言模型之间的差异,以及它们如何组合以提供端到端语音识别。 本节
1
人脸佩戴口罩状态检测的训练好的模型(jetson nano端) paddlepaddle-gpu SSD-mobilenet 包括: __model__ __params__ infer_cfg.yml 注意:在jetson nano端运行。
2021-11-12 19:04:06 19.76MB 口罩检测 paddlepaddle 嵌入式 模型文件