基于Django构建在线文本分类预测系统代码、模型、数据集:SVM模型在线预测与部署 基于 Django 3.2 框架,参考博客:https://blog.csdn.net/wangyaninglm/article/details/116334297
2021-12-06 11:02:11 327.82MB svm 在线预测 文本分类
传统的极限学习机作为一种有监督的学习模型,任意对隐藏层神经元的输入权值和偏置进行赋值,通过计算隐藏层神经元的输出权值完成学习过程.针对传统的极限学习机在数据分析预测研究中存在预测精度不足的问题,提出一种基于模拟退火算法改进的极限学习机.首先,利用传统的极限学习机对训练集进行学习,得到隐藏层神经元的输出权值,选取预测结果评价标准.然后利用模拟退火算法,将传统的极限学习机隐藏层输入权值和偏置视为初始解,预测结果评价标准视为目标函数,通过模拟退火的降温过程,找到最优解即学习过程中预测误差最小的极限学习机的隐藏层神经元输入权值和偏置,最后通过传统的极限学习机计算得到隐藏层输出权值.实验选取鸢尾花分类数据和波士顿房价预测数据进行分析.实验发现与传统的极限学习机相比,基于模拟退火改进的极限学习机在分类和回归性能上都更优.
1
基于SVM的分类预测
2021-11-16 17:00:03 150KB SVM,分类,预测
1
python机器学习,K近邻算法,红酒分类实战数据集,感兴趣的自取
2021-11-14 21:03:26 55KB K近邻算法 python 机器学习 分类预测
1
K近邻算法实战,精确的高,感兴趣的可以看一看
2021-11-14 21:03:26 3KB K近邻算法 python 分类预测 机器学习
1
基于麻雀搜索算法优化的SVM数据分类预测.rar
2021-11-09 18:15:20 607KB SVM 麻雀搜索算法
1
柴油机故障诊断,pnn分类预测,可直接运行
2021-11-02 17:08:13 192KB PNN 分类
1
上市公司新闻文本分析与分类预测 简介 上市公司新闻文本分析与分类预测的基本步骤如下: 从新浪财经、每经网、金融界、中国证券网、证券时报网上,爬取上市公司(个股)的历史新闻文本数据(包括时间、网址、标题、正文) 从Tushare上获取沪深股票日线数据(开、高、低、收、成交量和持仓量)和基本信息(包括股票代码、股票名称、所属行业、所属地区、PE值、总资产、流动资产、固定资产、留存资产等) 对抓取的新闻文本按照,去停用词、加载新词、分词的顺序进行处理 利用前两步中所获取的股票名称和分词后的结果,抽取出每条新闻里所包含的(0支、1支或多支)股票名称,并将所对应的所有股票代码,组合成与该条新闻相关的股票代码列表,并在历史数据表中增加一列相关股票代码数据 从历史新闻数据库中抽取与某支股票相关的所有新闻文本,利用该支股票的日线数据(比如某一天发布的消息,在设定N天后如果价格上涨则认为是利好消息,反之则是
2021-10-27 10:54:26 5.39MB machine-learning text-mining webcrawling Python
1
tensorflow二分类预测病马数据集
2021-10-23 09:10:00 7KB tensorflow
1