数学建模、医学肾炎化验分析模型,这是一个获奖的作品,是我同学做的,希望大家看了会有所启发!
此数学模型的建立主要是为了解决这样的问题,通过检测人体内相关微量元素的含量来判定一个人是否患肾炎。因而在此数学模型中,自变量为体内若干种微量元素的含量,因变量作为判定一个人是否患病的主要数据,做如下设定,当被确诊为患病时,设为1,被确诊为健康时,设为0.我们通过对数据的基本分析和判别,试图通过线性回归模型解决这个问题,经过查阅相关资料,了解到logistic模型被广泛应用于病理学研究中作为研究模型,于是利用excel中的回归工具建立logistic回归模型,计算出该线性方程的常量和系数从而完成模型的初步建立。
然后利用回归统计表、方差分析表中、回归参数表等中的数据进行分析,来衡量线性回归的拟合度,以及线性方程中各参数的显著性,发现其回归程度较好,又通过将表1和表2中已确诊的数据代入,对60例受检者的数据进行判别,若大于0.5则判定为患病,若小于0.5则判定为健康。对应的logit(p/(1-p))为正数时候患病,为负数时为健康。发现该模型在本题判断中的正确率高达93.33%,预测能力显著。
诊断待测病人,将表3中的数据代入计算其患病概率,判别标准同上所述,得出受检者中有15人健康,15人患病的结论。
回归参数表中回归系数的统计量的线性系数显著性t值,表征了该系数的显著性水平,也表征了该项因素对于因变量判定的影响程度。因此以此为衡量的标准来筛选7项相关因素,找到系数显著性最小三种元素,分别为Na,Zn,K;我们又用排列组合的方法分别删除其中的一种、两种和三种元素,分别计算此时代入前60组数据时的准确度,通过比较从而确定主要影响元素。保留了Ca,Cu,Fe,Mg四种元素,除去非主因素的干扰,用同样的方法重新计算该模型各系数的数值,在保证较高准确率的前提下,最终达到了简化检测过程的目的。
利用排除非显著性元素后的Logistic模型,将表3中的数据代入计算其患病概率,判别标准同上所述,得出受检者中有16人健康,14人患病的结论。
1