伯克利AI课程项目 WashU的课程项目CSE 511。 [项目0] Python基础 [项目1] 吃豆人搜寻:DFS,BFS,A *,UCS,次优搜寻等。 [项目2] Pacman剂:反射剂,Minimax剂,Alpha-Beta剂和Expectimax剂。 [项目3] Pacman代理:值迭代代理,Q学习强化学习代理和近似Q代理。 [项目4] 捉鬼敢死队:任务难度从追踪单个静止的幽灵到以无情的效率寻找多个移动幽灵的猎物包。 警告: 不要为自己的任务复制我的代码!
1
AI学习投资-周六AI Euskadi。 机器学习项目的应用使新手的投资更容易理解。 1.投资比例的网站报废。 我们已经废弃了与来自纽约证券交易所市场的公司相关的beautifoulSoup投资数据。 2.创建数据集。 我们在过去10年中随机模拟了500.000个投资,投资期限在1天到2年之间。 通过应用分类或归一化技术等方法,已清理数据集并准备进行机器学习建模。 如果要使用结果数据集,则将其保存到“ datasets / transactions_variables.csv”中。 3.数据建模和优化。 在用pycaret筛选出哪种分类模型更适合我们的问题之后,我们选择了“决策树”,因为它更易于解释。 请记住,我们的目标不是进行更好的投资,而是使投资可用于更广泛的人群。 借助Graphviz,优化了决策树并可视化了结果。 4.数据部署并在REST API服务器上进行测试。 该项目的
1
灰狼算法优化最小二乘支持向量机,可以进行数据预测。如果不想改动代码,输入的数据请按照示范的数据(data)排列的方式进行排列。注:行为指标集u11-u53 ,列为数据集。 本代码可以用于股价预测,电力预测,交通流量预测,风险预测,价格预测等等。 代码可能有不完善的地方,可按照需求自行修改。
2021-11-02 09:05:18 132KB matlab neurol network intelligence
1
虽然大多数关于人工智能、算法和偏见的研究都是从信息技术和计算机科学领域的“公平”的角度进行的,但本章探讨了算法歧视的问题——一个不完全重叠的类别带有算法偏见——从非歧视法的具体角度来看。 特别是与目前大多数关于算法和歧视问题的研究侧重于美国背景相比,本章将欧盟非歧视法作为其调查对象。 我们提出了非歧视一般原则的弹性问题,即欧盟平等法有效应对算法歧视带来的具体挑战的能力。 由于欧盟法律代表了一个总体框架,并为欧盟成员国在国家层面上防止歧视制定了最低保障措施,因此重要的是测试对人工智能技术在日常生活应用中普遍且日益增加的使用所带来的风险的保护措施。这个框架允许。 因此,本章描绘了人工智能对平等和非歧视所带来的挑战,这既是欧盟法律的一般原则,也是一项基本权利。 首先,我们确定了基于人工智能的决策,尤其是机器学习算法所带来的具体歧视风险。 其次,我们回顾了欧盟非歧视法如何在其实体范围方面捕捉算法歧视。 第三,我们从概念的角度进行审查,绘制出从欧盟法院 (CJEU) 制定的直接和间接歧视概念的角度出现的摩擦点。 在最后一步,我们确定算法歧视在执法层面带来的核心挑战,并提出潜在的前进方向。
2021-11-01 16:33:28 597KB Discrimination Artificial intelligence
1
算法决策和其他类型的人工智能 (AI) 可用于预测谁将犯罪、谁将成为好员工、谁将拖欠贷款。 然而,算法决策也可能威胁到人权,例如不受歧视的权利。 该论文评估了欧洲当前针对歧视性算法决策的法律保护。 该论文表明,非歧视法,特别是通过间接歧视的概念,禁止多种类型的算法歧视。 数据保护法也有助于保护人们免受歧视。 适当执行非歧视法和数据保护法有助于保护人民。 然而,该论文表明,当应用于人工智能时,这两种法律文书都存在严重的弱点。 该文件建议如何改进现行规则的执行。 该论文还探讨了是否需要额外的规则。 该论文主张采用特定于行业的规则,而不是通用规则,并概述了一种规范算法决策的方法。
2021-11-01 16:28:39 310KB artificial intelligence machine
1
matlab计算隶属度代码KNN算法检测乳腺癌 K-最近邻分类 k-最近邻域 (KNN) 算法是一种易于实现的监督学习算法。 它用于解决分类和回归问题,在工业中用于解决工业中的分类问题。 在模式识别中,K-最近邻算法(K-NN)是一种用于分类和回归的非参数方法。 在这两种情况下,输入都由特征空间中的 K 个最接近的训练示例组成。 K-NN 是一种基于实例的学习。 在 K-NN 分类中,输出是一个类成员。 分类是由邻居的多数票完成的。 如果 K = 1,则该类是单个最近邻 [6]。 KNN 算法是由 TM Cover 和 PE Hart 在 1967 年提出的。该算法是通过使用来自已知类别的样本集的数据来使用的。 根据现有数据计算新数据要包含在样本数据集中的距离,并检查k个近邻域。 通常,距离计算使用 3 种距离函数: “欧几里得”距离 到“曼哈顿”的距离 “闵可夫斯基”是距离。 神经网络; 它是最流行的机器学习算法之一,因为它可以抵抗旧的、简单的和嘈杂的训练数据。 然而,它也有一个缺点。 例如,当用于大数据时,它需要大量的内存空间,因为它在计算距离时存储所有状态。 KNN算法的步骤:
2021-11-01 11:38:27 1.98MB 系统开源
1
人工智能是一种颠覆性技术,在金融部门全面采用后,将彻底改变功能并帮助行业以最佳方式运作。 该研究应用混合研究设计和二手资料来建立关于人工智能在行业中作用的现有文献。 研究证据表明,人工智能对跨越金融服务领域并解决行业挑战的金融部门有许多好处。 人工智能是一个涵盖机器学习和机器人过程自动化等技术的总称。 所有这些技术能力都将帮助金融部门应对行业中存在的威胁和挑战,例如网络安全、欺诈和风险管理。
2021-10-30 21:40:56 152KB Artificial intelligence robotic
1
国际象棋极小值 在python中使用Minimax算法的国际象棋游戏。 将此文件打开到Jupyter Notebook中,然后运行该程序。 在此程序中输入输入作为行名和列名。 例如,a2a4
2021-10-21 05:20:54 3KB python chess ai artificial-intelligence
1
Artificial Intelligence for Games, Second Edition
2021-10-19 10:14:04 4.09MB Artificial Intelligence Game
1
HaloNet-火炬 本文的注意力层的实现,。 该存储库将仅容纳关注层,而不会包含更多内容。 安装 $ pip install halonet-pytorch 用法 import torch from halonet_pytorch import HaloAttention attn = HaloAttention ( dim = 512 , # dimension of feature map block_size = 8 , # neighborhood block size (feature map must be divisible by this) halo_size = 4 , # halo size (block receptive field) dim_head = 64 , # dimension of
1