智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2023-04-06 14:25:27 399KB matlab
1
为了提高国产合成孔径雷达(SAR)和光学图像的融合性能,采用高分一号、高分二号多光谱图像,高分三号SAR 聚束模式和精细化条带1模式图像,利用变换域和空间域两种不同的融合思想,提出一种非下采样剪切波变换(NSST)方法结合IHS(intensity-hue-saturation)变换和区域性改进脉冲耦合神经网络(PCNN)方法的融合算法(IHS_NSST)。该算法首先对多光谱图像进行IHS变换;其次在NSST分解的子带上,引用区域性的思想,对低频成分采用区域能量平均方法,对高频成分采用改进拉普拉斯能量和(SML)激励的PCNN方法;最终从定性和定量两个方面进行评价,并将所提算法与多种融合方法作比较。结果表明:基于区域性IHS_NSST的融合方法在高分SAR和光学图像融合上有较大的优势;采用该方法大大提升了融合性能,有效减小了光谱失真,较好地保持空间特征信息,提高了国产高分SAR和光学图像的可利用程度。
2023-04-05 19:44:19 13.04MB 图像处理 图像融合 国产高分 非下采样
1
为了解决方向对纹理图像细节增强的限制问题,提出一种融合小波变换与改进脉冲耦合神经网络(PCNN)的图像增强算法。该算法首先对图像进行二维离散小波变换,提取图像的高频分量图。然后将图像像素的局部梯度值作为链接强度系数,在动态阈值函数中加入侧抑制信号来改进脉冲耦合神经网络;并用改进的脉冲耦合神经网络对高频分量图进行增强。最后使用中值滤波对小波重构后的图像进行非线性平滑,实现纹理图像细节的增强。实验结果表明,该算法能够有效地减少图像细节增强时方向的限制。增强后,纹理图像的细节更加丰富,整体对比度也有一定的提高。
2023-04-05 13:48:16 624KB 论文研究
1
对当前数据融合方法的一个综述,描述的各种方法的优缺点,并列举了相关的应用
2023-04-04 15:40:20 295KB 机器学习
1
针对嵌入式大气数据系统高空飞行精度低、跨大气层易失效等问题,提出一种融合惯导与飞控系统信息的 飞行大气全参数估计算法.基于飞行器气动模型及动力学方程,建立惯导信息与大气参数之间的函数 关系,进而利用扩展卡尔曼滤波实现大气参数的实时精确估计.仿真结果表明,该方法具有较高的 精度、良好的稳定性和鲁棒性,而且可以提高大气数据系统的测量范围和可靠性,能够适用于全 飞行包线下攻角、侧滑角、真空速的测量.
1
注意特征融合 用于“注意特征融合”的MXNet / Gluon代码 到目前为止,此仓库中有什么: ImageNet的代码,训练有素的模型和训练日志 PS: 如果您是我们提交的论文的审稿人,请注意,当前实现的准确性比本文中的准确性要高一些,因为它是一个带有很多技巧的新实现。 如果您是我的学位论文评估专家,发现论文与这个repo的数字有些出入,那是因为在论文提交后我又将代码重新实现一遍遍,添加了AutoAugment,Labelinging这些技巧,因此目前这个repo中的分类准确率会比论文中的数字高一些,还请见谅。 更改日志: 2020-10-08:通过一整套技巧重新实现图像分类代码 2020-09-29:上载所提交论文的图像分类代码和训练有素的模型 去做: 在ImageNet上运行AFF-ResNeXt-50和AFF-ResNet-50 在新的训练模型上更新Grad-CAM结果 重新实
2023-04-03 16:44:16 386.7MB Python
1
随着互联网的快速发展,各类应用系统对数据的存储、计算和网络等要求也越来越高,许多企业频繁出现数据存储、传输速度与计算能力的不匹配状况,一边是空闲的计算资源,一边却是繁忙等待的数据读写。在这样的大数据背景下,基于分布式存储、网络、计算等功能融合为一体的超融合架构横空出世。从一开始的概念到解决方案的不断完善,超融合基础架构现在已经是非常流行的IT基础架构。
2023-04-03 15:09:13 582KB 超融合 云宏
1
用contourlet变换对多聚焦图像进行融合处理,效果比较满意。
2023-03-31 12:51:17 46KB contourlet,多聚焦图像,融合
1
红外光谱数据融合对美味牛肝菌产地鉴别.pdf
1
提出了一种新的基于非下采样轮廓波(NSCT)和脉冲耦合神经网络(PCNN)相结合的自适应图像融合方法,对已经配准的源图像进行NSCT分解,得到低频子带系数和不同方向的高频子带系数,对NSCT分解的低频部分采用简单的加权平均融合规则;而高通子带系数,采用改进的拉普.斯能量作为PCNN链接强度的方法.最后,对融合的系数进行NSCT逆变换得到融合图像.实验结果表明,本文算法明显优于其他几种方法,具有更好的融合性能,清晰度更高,是一种可行、有效的图像融合方法,
2023-03-30 20:45:48 584KB 自然科学 论文
1