k均值约束 K-均值聚类实现,可以为每个聚类指定最小和/或最大大小。 通过将K-means实现公式化为最小成本流(MCF)线性网络优化问题,它可以修改集群分配步骤(EM中的E)。 然后,使用成本缩放推入重新标记算法解决此问题,并使用这是一种快速的C ++实现)。 该软件包的灵感来自 。 Bradley等人提出的原始最低成本流(MCF)网络。 已被修改,因此最大群集大小和最小群集大小也可以指定。 该代码基于并实现了相同的 。 参考: 安装 您可以从PyPI安装k-means-constrained: pip install k-means-constrained 在Python 3.6及更高版本中受支持。 例子 可以在API文档中找到更多详细信息。 >> > from k_means_constrained import KMeansConstrained >> > i
2021-09-29 15:46:50 10.65MB python clustering optimization ml
1
matlab实现模糊C均值聚类,附带包含600个2维数据的数据集,可视化展示结果。数据集有3类,分别分布在第一、二 三象限。
2021-09-29 14:45:59 14KB matlab FCM
1
摘  要: 使用Intel Parallel Amplifier高性能工具,针对模糊C均值聚类算法在多核平台的性能问题,找出串行程序的热点和并发性,提出并行化设计方案。基于Intel并行库TBB(线程构建模块)和OpenMP运行时库函数,对多核平台下的串行程序进行循环并行化和任务分配的并行化设计。   并行性主要是指同时性或并发性,并行处理是指对一种相对于串行处理的处理方式,它着重开发计算过程中存在的并发事件。并行性通常划分为作业级、任务级、例行程序或子程序级、循环和迭代级以及语句和指令级。作业级的层次高,并行处理粒度粗。粗粒度开并行性开发主要采用MIMD方式,而细粒度并行性开发则主要采用SI
1
clustering based on kernel kmeans
2021-09-26 10:09:48 924B kernel kmeans
1
对数值型数据分别进行K均值和模糊C均值聚类,并对两种聚类算法的聚类正确率进行比较,得出结论;
2021-09-24 18:47:53 4.81MB K均值 模糊C均值 聚类 正确率
1
Fuzzy C Means - Multi clustering and find center of clusters with Python模糊C均值聚类的python实现,用于实现图像分割
2021-09-24 18:27:06 2KB 图像分割
1
FCM算法两种迭代形式的MATLAB代码,供数据挖掘、模式识别或图像处理等方面参考
2021-09-22 20:07:53 6KB FCM
1
SpotifyAnalysis:分析了Kaggle上的Spotify数据集,以预测歌曲和流派特征以及理想的发行月份,以使用逻辑回归,K-均值聚类和分类树在Spotify上最大限度地提高歌曲的知名度
2021-09-20 13:34:05 1.89MB
1
针对基于颜色特征空间的半监督聚类分割算法适合分割结果包含多个颜色特征相似目标的应用场合,但对高噪声图像却无法获得理想的分割结果,而基于随机游走理论的半监督图像分割算法需要用户对目标逐一进行标记的问题,提出一种半监督图像分割算法.首先根据用户标记采用半监督模糊C均值聚类(SSFCM)算法对图像颜色特征进行建模;然后引入一个确信度函数,并根据SSFCM算法得到的隶属度数据计算确信度函数值,再将像素分为2类,分别作为随机游走图像分割算法的已标记点和未标记点;最后采用随机游走算法完成最终的分割.实验结果表明,该算法对图像中的噪声具有良好的抑制作用,且无需用户对目标逐一进行标记.
1