该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2021-12-04 11:04:52 8.72MB matlab
1
这是yolov5的识别的模型和源码,opencv4.4,vs2019,c++写的,下载直接在vs2019上运行就可以,不用添加环境。
2021-11-24 21:09:33 99.52MB yolov5
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2021-11-24 09:03:34 8.74MB matlab
1
该课题为基于Matlab的口罩识别系统。口罩识别系统呢,是在疫情之后新兴起的一个课题。全网属于可参考资料并不多。本课题为基于颜色加形态学的算法。需要先进行人脸检测,因为口罩是穿戴在脸部的,并不是在手臂或者是胸部等部位。本设计具备有人机交互界面,需要进行相应的拓展。
2021-11-21 12:03:37 1.85MB matlab
1
基于yolo网络的目标识别检测方法,及训练说明。YOLO(You Only Look Once: Unified, Real-Time Object Detection),是Joseph Redmon和Ali Farhadi等人于2015年提出的基于单个神经网络的目标检测系统。在2017年CVPR上,Joseph Redmon和Ali Farhadi又发表的YOLO 2,进一步提高了检测的精度和速度。
2021-11-14 10:51:15 3.64MB yolov3 深度学习 数据集
1
车道线 车辆 人脸 动作 骨架 识别 检测.zip
2021-11-11 21:40:15 145.78MB labview
1
一、课题介绍 本文设计了一款人体行为异常监控系统,主要适用人群是老年人,在摄像头固定的情况下,自动检测人体运动轨迹,并与提前设定好的行为库进行匹配,分析判断是否具有异常行为。 在数字图像预处理部分采用了图像二值化,腐蚀与膨胀等几种方法为人体目标的跟踪和检测做准备。为了克服在实际操作中遇到的问题,采用了帧差法和ViBe算法,帧差法即利用帧间变化与当前帧、背景算法来判断它是否大于阈值,并分析视频中序列的运动特性,ViBe算法则是一种背景建模的方法,背景模型是由邻域像素来创建,并对比背景模型、当前输入像素值检测出前景,确定视频中的目标跟踪。在人体行为识别中,运动目标最小长宽比以及连续帧间的加速度来判断人体行为是否异常,如果检测到异常的行为比如说摔倒、快跑等行为,在识别的过程这种实时监测。
1
envi丢失dll,最近使用ENVI 5.3 64bit ,打开时候弹出对话框 丢失idl.dll, 提示重新安装可以解决此问题。由于重新安装过于复杂,所以这里找了一下丢失原因:原来是由于win10 安全中心将idl.dll 当作病毒误删除,这里采用以下方法,可以恢复ENVI的正常使用
2021-08-23 12:48:04 1.63MB 技术
1