知识辅助(KA)时空自适应处理(STAP)是一种吸引人的方案,用于提高在样本匮乏的异构环境中慢速移动目标的检测性能。 在本文中,我们解决了在KA约束下干扰协方差矩阵的最大似然估计问题。 为了降低内点法的复杂性,我们导出了干扰协方差矩阵的近似形式最大似然估计。 此外,对于在KA约束中仍然无法解决的开放问题的超参数选择,我们提出了一种基于似然函数和交叉验证的高效且全自动的方法。 我们发现,提出的估计器由白化样本协方差矩阵(SCM)的预白化步骤和特征值截断步骤组成,这与假定的杂波协方差(FMLACC)方法与现有的快速最大似然性有些相似。 但是,他们采用了不同的方法来截断增白的SCM的特征值。 数值模拟还表明,通过适当地选择超参数,所提出的估计可以显着优于在某些情况下FMLACC方法。
2024-07-17 09:17:31
472KB
研究论文
1