SOA和Canoe的结合
2023-02-21 21:17:43 1.74MB canoe
1
项目介绍 乐优商城是一个全品类的电商购物网站(B2C) 用户可以在线购买商品,加入购物车,下单,秒杀商品 可以评论已购买商品; 管理员可以在后台管理商品的上下架,促销活动 管理员可以监控商品销售状况 系统架构 ####架构图: ####架构图介绍: ** 后台管理** 后台系统主要包含以下功能: 商品管理,包括商品分类,品牌,商品规格等信息的管理 销售管理,包括订单统计,订单退款处理,促销活动生成等 用户管理,包括用户控制,冻结,解锁等 权限管理,整个网站的权限控制,采用智威汤逊鉴权方案,对用户及API进行权限控制 预览图: 前台门户 前台门户面向的是客户,包含与客户交互的一切功能例如: 搜索商品 加入购物车 下单 评价商品等等 前台系统我们会使用Thymeleaf模板引擎技术来完成页面开发。出于SEO优化的考虑,我们将不采用单页应用。 无论是前台还是后台系统,都共享相同的微服务集群,包括
2023-02-19 13:15:36 15.73MB JavaScript
1
使用OpenAI Gym和TensorFlow结合广泛的数学知识来掌握经典RL,深度RL,分布式RL,逆RL等 关于这本书 近年来,随着算法质量和数量的显着提高,《 Python上的动手强化学习》第二版已完全改编为示例丰富的指南,用于学习最新的强化学习(RL)和使用TensorFlow和OpenAI Gym工具包的深度RL算法。 除了探索RL基础知识和基本概念(例如Bellman方程,Markov决策过程和动态规划)之外,第二版还深入探讨了基于价值,基于策略和批评演员的RL方法的全过程,并提供了详细的数学知识。 它深入探索了最新的算法,例如DQN,TRPO,PPO和ACKTR,DDPG,TD3和SAC,从而使基础数学神秘化并通过简单的代码示例演示了实现。 本书有几章专门介绍新的RL技术,包括分布式RL,模仿学习,逆RL和元RL。 您将学习如何利用OpenAI基准库的改进“稳定基准”轻
1
1、 实现了隶属度计算 2、将熵权法与层次分析法相结合 3、层次分析法分别实现了特征根法、算术平均法、开根法
2023-02-18 22:09:25 14KB 熵权法 模糊物元法 层次分析法
1
import numpy import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.tsa.arima_model import ARIMA from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.seasonal import seasonal_decompose sp500_2013_2018 = pd.read_csv('sp500_data/SP500.csv') print(sp500_2013_2018.head())
2023-02-18 21:44:49 758KB LSTM
1
车辆识别方法计算量大,提取的特征复杂,且传统神经网络利用端层特征进行分类导致特征不全面,为此提出了一种结合卷积神经网络(CNN)多层特征和支持向量机(SVM)的车辆识别方法。该方法在传统AlexNet模型基础上构建卷积神经网络模型,通过分析参数变化对测试正确率的影响得到最优车辆识别模型;提取多层车辆特征图,采用串行融合方法与主成分分析降维技术将其构成一个具有多属性的车辆特征向量,以增强特征全面性,减少计算量;利用SVM分类器代替CNN的输出层实现车辆识别,以提高模型泛化能力与纠错能力。实验结果表明,相比传统方法,所提方法在分类精度和识别速度方面都有显著提高,且具有良好的稳健性。
2023-02-17 10:47:50 3.21MB 图像处理 卷积神经 车辆识别 改进AlexN
1
分布估计算法是一种新的种群进化算法,通过建立概率模型得到新的个体,copula分布估计算法是将copula理论与分布估计算法结合,提高估计的精确性和效率。针对分布估计算法全局收敛的特点,与BP算法结合可以避免BP算法易陷入局部极值点的缺陷,同时可以使优化结果更加精确。本文采用copula EDA与BP算法的两种结合模式来优化神经网络的权值和阈值,并且比较两种结合模式。可以得出,copula分布估计算法与BP算法融合可以提高收敛速度和精确性。
2023-02-13 20:28:53 405KB 自然科学 论文
1
注:以前学习flask框架时老师期末留的大作业。想要学习flask框架的可以用来学习学习常用的知识点。本次大作业的内容如下:实现一个机器学习算法演示网站,要求网站使用flask-bootstrap模板,能够同时在手机和计算机上良好地显示页面(即响应式页面) 2.1 注册和登录功能,要求使用数据库,并且计算密码散列值 2.2 登录成功后,显示算法演示主页面 2.2.1 主页面先显示三种鸢尾花的图片(图片自己上网搜索) 2.2.2 再下一行显示带链接机器学习算法:线性回归算法、决策树算法、支持向量机算法、朴素贝叶斯算法、KNN聚类算法 2.2.3 点击文字可以跳转到相应的演示页面 2.3 单个算法演示页面,包括但不限于如下功能 2.3.1 用flash函数显示文字:服务端正在使用某某算法进行鸢尾花分类计算,此时服务端程序即时运行相应的机器学习算法 2.3.2 然后显示算法名称和运行算法程序得到的训练得分 2.3.3 下面再显示一张图片,图片是算法的文字描述和相应的公式 2.3.4 下面一行显示带链接的文字:返回主页,点击则返回演示主页面 实现了flask框架与机器学习相结合,在页面中显示。
2023-02-10 13:45:45 2.43MB flask pythonweb 后端 python
1
针对目前学术界主流的基于内容提取音乐结构开销过大和产生冗余碎片的问题,提出通过歌词分析对音乐结构进行自动提取,同时结合基于内容的SVM分类,以歌曲节拍为单位进行有无人声的判别,进一步对歌词提取的边界进行校正,精确了音乐结构的边界点。在相同数据集上的实验中,这种歌词与内容分析相结合的音乐结构提取算法对桥段和尾奏的分析准确率分别提高了9%和11%。
1
matlab代码粒子群算法基于运动的校准 Matlab方法结合运动结构和Levinson方法校准Velodyne相机系统 除了我们自己的方法外,这些脚本还使用以下代码: ICP- 另一个粒子群工具箱- Kabsch算法的实现-
2023-01-04 13:51:43 405KB 系统开源
1