本文深入探讨了利用多目标粒子群算法进行选址定容优化的方法,特别关注于储能系统在其中的作用与出力分析。文章首先介绍了多目标粒子群算法的基本原理和选址定容问题的背景,接着详细阐述了如何通过该算法解决选址定容过程中的复杂问题,尤其是在考虑储能系统出力的情况下。此外,文章还提供了实际应用案例和效果评估,为读者展示了该方法的实用性和有效性。 适用人群: 本文适合电力系统规划、优化算法研究、储能技术应用等领域的学者、工程师和研究人员阅读。 使用场景: 当读者需要了解或应用多目标粒子群算法来解决选址定容问题,特别是在涉及储能系统出力分析时,本文可作为重要的参考资料。 目标: 本文旨在为读者提供一套完整的、基于多目标粒子群算法的选址定容优化方法,并通过对储能出力的深入分析,帮助读者更好地理解储能系统在选址定容中的重要作用。 关键词: 多目标粒子群算法、选址定容、储能系统、出力分析
2024-04-25 09:42:08 4.32MB matlab 多目标粒子群算法
1
目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测
2024-04-24 18:33:08 377.67MB 目标检测
1
Unity目标点距离显示+屏幕追踪+路线指引
2024-04-24 17:08:27 203KB unity
1
火焰识别 + yolov8 + 测试视频 + 预测权重.pt 资源包含: 1.预测权重 2.测试视频 直接下载后放入yolov8官方工程中,直接执行官方detect即可进行火焰识别
2024-04-23 19:23:17 91.76MB 目标检测 YOLO 火焰识别 计算机视觉
1
基于改进光流法的运动目标检测研究,彭亚男,陈振学,运动目标检测在现实场景中具有极其重要的意义,它是跟踪和识别运动物体状态的前提。光流法不需要复杂的背景建模,而且能够得到运
2024-04-22 17:19:40 789KB 光流法
1
以打击地面运动目标为研究对象,提出了一种带落角约束的滑模变结构制导律。通过将目标视为参照原点,
从而将定常速度打击运动目标的问题转化为时变速度打击固定目标的问题。在此模型基础上,进一步分析得到了打
击运动目标的稳定状态条件。结合该稳定状态及落角约束条件,利用滑模变结构理论设计得到该制导律。仿真结果
表明,该制导律可以对运动目标实现全向打击并且具有良好的制导性能。
2024-04-20 00:32:52 1.46MB
1
这个资源包含一个为Yolo目标检测模型特别设计的数据增强Python脚本。脚本采用多种数据增强技术,包括图像缩放(保持比例和下降比例)、随机水平和垂直翻转、中心裁剪,以及图像属性(亮度、对比度、饱和度)调整。此外,它还提供了高斯噪声、盐噪声和椒噪声的添加功能,使模型能够更好地处理现实世界中的图像。这些数据增强技术能够显著提高目标检测模型在多样化环境下的准确性和鲁棒性。 这个脚本非常适合机器学习和计算机视觉研究者,尤其是那些使用Yolo进行目标检测的开发者。通过本脚本,用户可以轻松地对他们的数据集进行增强处理,从而提高模型的泛化能力和性能。无论您是深度学习的新手还是经验丰富的研究者,这个资源都是您的理想选择。
2024-04-18 20:19:13 13KB python 目标检测 特征增强
1
yolov8 pyqt6可视化界面,实现语言分割、目标检测 、关键点检测
2024-04-18 18:34:52 53.47MB 目标检测 关键点检测
1
使用YOLO模型结合pyqt图形界面可视化目标检测,拥有摄像头,图片,视频检测三大模块。
2024-04-18 14:51:54 14.81MB pyqt 目标检测
1
目标定位是具有众多应用的多输入多输出(MIMO)雷达系统的一项基本任务。 在本文中,我们研究了带有电磁矢量传感器(EMVS)的双基地MIMO雷达中的定位问题。 与传统的定标器传感器不同,EMVS能够提供二维(2D)方向搜索,并且可以提供光源的附加偏振特性。 因此,双基地EMVS-MIMO雷达系统中的目标定位涉及2D离开方向(2D-DOD)和2D到达方向(2D-DOA)估计。 此外,我们可以获得目标的发射偏振特性以及偏振特性。 为了利用匹配滤波器之后的阵列测量的张量性质,开发了张量子空间算法,该算法通过叉积技术从张量子空间估计目标参数。 所提出的算法获得了用于参数估计的封闭形式的解决方案,与现有算法相比,它表现出更准确的性能。 数值仿真验证了所提算法的有效性和改进性。
2024-04-16 15:53:19 3.47MB 研究论文
1