为了进一步提高网络异常检测的准确率, 本文在对现有入侵检测模型分析的基础上, 提出了一种基于卷积神经网络和支持向量机的网络报文入侵检测方法. 该方法首先将数据预处理成二维矩阵, 为了防止算法模型过拟合, 利用permutation函数将数据随机打乱, 然后利用卷积神经网络CNN从预处理后的数据中学习有效特征, 最后通过支持向量机SVM分类器将得到的向量进行分类处理. 在数据集选择上, 采用网络入侵检测常用的权威数据集—京都大学蜜罐系统数据集, 通过与GRU-Softmax、GRU-SVM等现有检测率较高的模型进行实验对比, 该模型在准确率上最高分别提高了19.39% 和12.83%, 进一步提升了网络异常检测的准确度. 同时, 本研究所提出方法在训练速度和测试速度上有较大提高.
1
1、内容概要:本资源主要基于TextCNN(keras)实现文本分类,适用于初学者学习文本分类使用。 2、数据集为电商真实商品评论数据,主要包括训练集data_train,测试集data_test ,经过预处理的训练集clean_data_train和中文停用词表stopwords.txt,可用于模型训练和测试,详细数据集介绍见商品评论情感数据说明文档。 3、源代码:word2vec_analysis.py 是基于Word2Vec进行词向量的生成,采用向量平均求得句向量,然后分别构建RandomForest和GBDT分类模型进行文本分类。 4、源代码:textcnn_model.py是基于Keras构建CNN、TextCNN卷积神经网络模型对文本进行分类。
2022-05-07 08:29:02 11.13MB 文本分类 深度学习 TextCNN 自然语言处理
大数据-算法-高性能特征选择及文本分类算法研究.pdf
2022-05-05 14:05:02 2.45MB 算法 文档资料 big data
1.2国内外研究现状 国外自动分类研究开始于1950年代末,H.P.Luhn在这一领域进行了开创性的 研究,他首先将词频统计的思想用于文本分类中。1960年Maron在Journal of ASM 上发表了有关自动分类的第一篇论文“On relevanee,pr。bab¨itic i ndexing and inf。rmation fetnral”。1962年博科(H.Borko)等人提出了利用因子分析法进行 文献的自动分类。其后许多学者在这一领域进行了卓有成效的研究。国外的自动分 类研究大体上可以分为三个阶段:第一阶段(1958年1964年)主要进行自动分类的 可行性研究:第二阶段(1965年一1974年),自动分类的实验研究:第三阶段(1975年一 至今),自动分类的实用化阶段⋯㈩⋯⋯⋯。现已在邮件分类、电子会议、信息 过滤等方面取得了较为广泛的应用,其中较为成功的系统有麻省理工学院(MIT)为 白宫丌发的邮件分类系统、卡内基集团为路透社丌发的construe系统等。 国内自动分类研究起步较晚“¨“,始于20世纪80年代初期。1981年侯汉清对 计算机在文献分类工作中的应用作了探讨,并介绍了国外在计算机管理分类表、计 算机分类检索、计算机自动分类、计算机编制分类表等方面的概况。此后,困内的 研究者在英文文本分类研究的基础上采取相应策略,结合中文文本的特定知识,然 后应用于中文之上,继而形成中文文本自动分类研究体系。到目前为止,我国陆续 研制出一批计算机辅助分类系统和自动分类系统。例如中国科学院、清华大学、北 京大学、北京信息工程学院、上海交通大学、复旦大学、东北大学、山西大学、同 济大学、南京大学、浙江大学以及西安电子科技大学等单位都有相应的研究成果, 也研制出了不少的实验系统。这其中有基于人工智能技术的分类系统,有基于统计 学技术的分类系统,还有基于模糊技术的分类系统,近几年基于统计知识的分类方 法占主流,也不乏有基于规则的分类方法。 国外当前流行的文本分类方法有k近邻法(KNN)”3、决策树”1、朴素贝叶斯(NB) ‘⋯、支持向量机(sVM)‘⋯、神经网络(NNet)Ⅲ”Ⅲ。1、线性最小平方拟合(LLsF)法⋯1、 最大熵模型“⋯、回归模型㈨㈨、遗传算法⋯1等方法。这些方法在英文文本自动分 类上有广泛的研究,而且很多研究表明KNN和SVM是英文文本分类的最好方法。国 外很多研究人员对英文文本分类领域的各个问题都有相当深入的研究,对几种流行 的方法进行了大量的对比研究。Yiming Yang and xin Liu“51对SvM、KNN、LLsF、 Nnet和NB这5种方法进行了专门的比较研究。 国内当前流行的文本分类方法有k近邻法(KNN)”6¨“1、朴素贝叶斯(naive
1
使用RNN、LSTM、GRU三种神经网络模型进行文本分类,效果不错,附上详细代码及数据
2022-05-02 09:27:05 36.65MB 代码 文本分类 RNN lstm
1
四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类,内附实验指导书、讲解PPT、参考代码 1、实验讲解PPT 4份 实验一 线性回归模型实验指导 实验二 支持向量机模型实验指导 实验三 贝叶斯分类解决西瓜问题 实验四 基于tensorflow实现CNN文本分类 2、实验指导书 4份 实验一 线性回归实验指导书 实验二 支持向量机实验指导书 实验三 贝叶斯分类实验指导书 实验四 基于tensorflow实现cnn文本处理实验指导书 3、实验参考代码 4份 实验一 LinearRegression 实验二 SVM 实验三 bayes_classify_demo 实验四 cnn-text-classification-tf
2022-05-01 12:05:44 4.63MB 机器学习 线性回归 支持向量机 cnn
面向语义的文本分类是指在给定的分类体系下,根据文本的内容自动识别文本类别的过程。是一种基于朴素贝叶斯算法的分类技术应用与中文短文本分类。
2022-04-29 14:58:40 714KB 短文本 分类 朴素贝叶斯
1
LibShortText是一个开源的Python短文本(包括标题、短信、问题、句子等)分类工具包。 python-libshorttext是对LibShortText的优化和封装。 标签:LibShortText
2022-04-29 14:45:39 161KB 开源项目
1
机器学习中的文本分类
2022-04-29 13:12:38 16.5MB Python
1