扩展卡尔曼滤波器不仅可以从噪声测量中估计非线性动态系统的状态,还可以用于估计非线性系统的参数。 参数估计的一个直接应用是训练人工神经网络。 这个函数和一个嵌入的例子展示了如何做到这一点。
2021-08-30 20:31:32 2KB matlab
1
该程序为EKFslam的matlab程序,程序中包含周围环境的构造和小车的运动控制部分。
2021-08-28 16:10:59 1.15MB ekfslam
1
这个包实现了以下卡尔曼滤波器: 1) 标准卡尔曼滤波器2) 扩展卡尔曼滤波器3) 双卡尔曼滤波器4) 平方根卡尔曼滤波器 该软件包还包含每种过滤器类型的说明性示例,演示它们的实际应用。 在所有 4 种情况下,KF 函数都接受多维系统的输入噪声样本,并根据噪声样本中固有的时变过程/噪声协方差产生真实系统状态的 KF 估计。 指数加权(或未加权)移动平均值用于从噪声测量中估计时变系统协方差。 标准卡尔曼滤波器是最基本的 KF 实现。 它假设一个模型,即噪声测量包含真实系统状态和白噪声。 扩展卡尔曼滤波器是标准卡尔曼滤波器的推广,允许用户指定非线性系统模型,然后在 EKF 执行期间迭代线性化。 双卡尔曼滤波器同时解决两个标准卡尔曼滤波器问题: 1) 将自回归模型拟合到数据并应用卡尔曼滤波器来更新 AR 模型 2)在执行标准KF更新之前,在每次迭代中应用AR模型 平方根卡尔曼滤波器
2021-08-19 21:29:12 194KB matlab
1
以匀速直线运动为例,设计了基于距离的目标跟踪算法,即状态量为X、Y轴的位置和速度,观测值为物体到观测站的距离,具体实现过程见代码
2021-08-18 21:45:03 1KB EKF
1
扩展卡尔曼滤波matlab代码,有注释,适合学习扩展卡尔曼滤波算法
2021-08-10 10:35:12 9KB matlab例程 matlab
数据融合matlab代码advanced_kalman_filter 使用扩展卡尔曼滤波器的传感器融合(LIDAR / RADAR) 这是Udacity的自动驾驶汽车纳米学位的第2项/第1项。 目录和文件 src包含代码(在C ++中)。 main.cpp :连接到模拟器的主要代码,从../data/obj_pose-laser-radar-synthetic-input.txt读取输入,执行ProcessMeasurement() (请参见下文),并计算和输出均方根误差(估计值(由卡尔曼滤波器计算得出)与地面真实性(数据文件中提供)的RMSE)。 该代码完全由Udacity提供。 FusionEKF.cpp / FusionEKF.h :使用ProcessMeasurement()方法定义Fusion Extended Kalman Filter类,该类将kalman_filter类的实例,并调用Predict()和Update() / UpdateEKF()方法。 kalman_filter.cpp / kalman_filter.h :定义FusionEKF::ProcessMe
2021-08-06 20:25:24 3.18MB 系统开源
1
matlab/simulink下扩展卡尔曼滤波的S函数实现
2021-07-28 09:59:54 49KB S函数,EKF
1
行业分类-物理装置-基于改进扩展卡尔曼滤波的多移动目标定位误差消除方法.zip
卡尔曼滤波、EKF、粒子滤波程序、帮助你学习,matlab程序,有相关代码注释等,对于传感器噪声等进行滤波。
2021-07-20 12:02:06 14KB 滤波算法
基于MATLAB/Simulink的扩展卡尔曼滤波器EKF的锂电池SoC计算。
2021-07-18 09:02:38 20KB 扩展卡尔曼滤波器 EKF 荷电状态 SoC