DSP卷积算法的实现实验报告
2023-04-08 23:16:43 111KB DSP 卷积 算法 实现
1
本代码在keras开源代码框架下,基于深度卷积神经网络,实现猫的图片识别。
2023-04-08 18:51:50 9KB Python Deep convolution
1
针对红外船只图像较模糊导致的识别率低、识别速度慢等问题,提出了一种基于深度卷积神经网络(CNN)的检测算法。首先采用标记分水岭分割算法提取红外船只图像中的连通区域,并对原图相应的目标位置进行标记和归一化处理,提取候选区域。采用改进的AlexNet(一种深度CNN模型)进行船只目标识别,将提取的候选区域送入改进的AlexNet进行特征提取和预测,得到最终检测结果。分水岭方法可大大减少候选区域检测时间,以及减少深度CNN识别时间。利用实验室自制的红外成像系统获取近千张红外船只图像数据,并对其平移缩放形成的数据集进行仿真实验。结果表明,标记分水岭与深度CNN的结合,可有效识别船只目标,所提方法具有良好的性能,能够更加快速准确地识别红外船只目标。
2023-04-08 13:02:37 7.45MB 测量 红外船只 标记分水 卷积神经
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2023-04-08 09:45:37 1.8MB
1
传统的图像识别问题为经典的特征提取和模式匹配问题,共分为两个方面图像识别 和特征匹配。本文首先对图像识别问题进行了分析和总结,选取了以 Python 语言的 PTL 库作为图像识别的基本架构,其基本思路为讲图片预处理,包括图像分割、字符提取等。 字符识别本质为一个模式匹配问题,采用神经网络具有较好准确度,但是神经网络 具有训练时间长,容易陷入局部次优的缺陷。针对这一个问题,采用以卷积神经网络, 以卷积作为度量标准,进一步提升神经网络的反馈性能。 论文以 LeNet5 为卷积神经网络的基本工具集,针对设计和开发数字图像识别系统 系统实现所需要的技术方法需要进行全面的分析和掌握。
2023-04-07 12:23:28 2.99MB 卷积神经网络 图片数字识别
1
如果你对DFace感兴趣并且想参与到这个项目中, 以下TODO是一些需要实现的功能,我定期会更新,它会实时展示一些需要开发的清单。提交你的fork request,我会用issues来跟踪和反馈所有的问题。也可以加DFace的官方Q群 681403076 也可以加本人微信 jinkuaikuai005 TODO(需要开发的功能) 基于center loss 或者triplet loss原理开发人脸对比功能,模型采用ResNet inception v2. 该功能能够比较两张人脸图片的相似性。具体可以参考 Paper和FaceNet 反欺诈功能,根据光线,质地等人脸特性来防止照片攻击,视频攻击,回放攻击等。具体可参考LBP算法和SVM训练模型。 3D人脸反欺诈。 mobile移植,根据ONNX标准把pytorch训练好的模型迁移到caffe2,一些numpy算法改用c++实现。 Tensor RT移植,高并发。 Docker支持,gpu版 安装 DFace主要有两大模块,人脸检测和人脸识别。我会提供所有模型训练和运行的详细步骤。你首先需要构建一个pytorch和cv2的python环境
2023-04-06 20:21:31 3.71MB MTCNN Center-Loss 多人实时人脸检测
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-04-06 16:36:40 341KB matlab
1
1.1 模型介绍 1.2模型结构 1.3 模型特性 2.1 模型介绍 2.2 模型结构 2.3 模型特性 3.1 模型介绍 3.2 模型结构 3.3 模型特性
2023-04-03 13:38:34 13.06MB 神经网络
1
该存储库包含本文中使用的tensorflow模型和训练脚本: 。 这些脚本改编自,此处为了使这些脚本自成一体,在此重复了一些脚本。 要训​​练具有3个完全连接的层且每层具有128个神经元的DNN,请运行: python train.py --model_architecture dnn --model_size_info 128 128 128 命令行参数--model_size_info用于将神经网络层尺寸(例如层数,卷积过滤器尺寸/步幅)作为列表传递给models.py,后者根据提供的模型体系结构和层尺寸构建张量流图。 有关每种网络体系结构的model_size_info的更多信息,请参见 。 与所有的超参数训练命令复制在显示模型给出了。 要从训练/验证/测试集上的检查点对训练后的模型进行推断,请运行: python test.py --model_architecture d
2023-04-03 10:17:17 19.47MB tensorflow keyword-detection C
1
用matlab进行信号卷积仿真 我们试举一例来看conv的功能,已知序列f1(k)和f2(k)如下所示: f1(k)=1,(0≤k≤2) f2(k)=k,(0≤k≤3) 则调用conv( )函数求上述两序列的卷积和的MATLAB命令为: f1=ones(1,3); f2=0:3; f=conv(f1,f2) 运行结果为:f=0 1 3 6 5 3
2023-03-29 20:37:43 189KB matlab 信号卷积 仿真
1