针对传统税收预测模型精度较低的问题,提出一种将Adaboost算法和BP神经网络相结合进行税收预测的方法。该方法首先对历年税收数据进行预处理并初始化测试数据分布权值;然后初始化BP神经网络权值和阈值,并将BP神经网络作为弱预测器对税收数据进行反复训练和调整权值;最后使用Adaboost算法将得到的多个BP神经网络弱预测器组成新的强预测器并进行预测。通过对我国1990--2010年税收数据进行仿真实验,结果表明该方法相比传统BP网络预测,平均误差相对值从0.50%减少到0.18%,有效地降低了单个BP陷入局
2022-12-29 15:51:15 313KB 工程技术 论文
1
建筑节能是当今城市建设和社会发展的前沿和研究热点,对建筑的能耗现状进行综合分析与评估是进行节能改造或节能设计的前提和基础,而建立反映能耗变化的预测模型是从宏观尺度上分析认识建筑能耗变化与发展特性、为公共建筑节能工作提供决策依据的有效途径和重要手段。研究针对常规BP网络算法收敛速度慢、易陷入局部最小点的缺点,采用了具有较快收敛速度及稳定性的LM算法进行预测,构造了基于BP神经网络的建筑物用电量预测模型。以某市公共建筑原始用电能耗统计数据作为样本,并采用MATLAB对预测模型进行了仿真预测。结果显示:误差在允
2022-12-27 20:27:38 694KB 工程技术 论文
1
matlab BP神经网络人脸识别系统
2022-12-26 19:31:30 6.44MB matlab BP神经网络 人工智能
1
研究的是手写字符的识别系统,首先介绍了现阶段光学识别技术(ORC)的发展情况,并对其在发展过程中存在的各种难题进行了分析和总结。然后对神经网络的国内外研究现状和主要特点进行详细的分析说明,并对神经网络模型进行了简要的介绍。在建立字符识别系统过程中首先需要制作手写字符的图片作为字符识别系统的输入信息,运用MATLAB作为系统实验的处理工具,建立基本函数。对字符图片进行归一化处理获取字符图片的数字的特征值,运用BP神经网络对输入的各个手写字符的特征值采进行训练,通过训练后的神经网络系统后对各手写字符图片进行识别。在实验环节采用 MATLAB 的读取手写的字符图像信息,由于提取的图像信息没有经过归一化处理所以无法获取其字符图像的特征信息。通过采用自定义的归一化算法对读取的字符图像归一化的预处理提取数字特征。将提取的数字特征信息作为神经网络的输入,对神经网络进行训练获取神经网络的输出结果。
2022-12-26 19:31:12 1.01MB BP神经网络 手写体数字识别 MATLAB
1
使用BP神经网络和LSTM预测股票价格(注释拉满)+数据集.zip 代码详细注释、带有数据集 Jupyter Notebook 使用BP神经网络和LSTM预测股票价格(注释拉满)+数据集.zip 代码详细注释、带有数据集 Jupyter Notebook 使用BP神经网络和LSTM预测股票价格(注释拉满)+数据集.zip 代码详细注释、带有数据集 Jupyter Notebook
2022-12-24 20:26:50 2.51MB JupyterNoteboo 股票预测 LSTM BP神经网络
基于BP神经网络的齿轮箱故障诊断
2022-12-24 15:52:46 534KB
1
BP神经网络解决字母识别问题matlab源代码BP神经网络解决字母识别问题matlab源代码
2022-12-20 16:48:54 421KB matlab
1
蜣螂优化算法(DBO)优化BP神经网络多输入单输出回归预测(Matlab完整程序和数据) 蜣螂优化算法(DBO),BP神经网络,多输入单输出回归预测。 蜣螂优化算法(DBO)优化BP神经网络多输入单输出回归预测(Matlab完整程序和数据)
基于python实现的BP神经网络手写数字识别模型实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能 课程作业 手写数字数据集 BP网络模型识别手写数字 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。反向传播要求有对每个输入值想得到的已知输出,来计算损失函数梯度。因此,它通常被认为是一种监督式学习方法。反向传播要求人工神经元(或“节点”)的激励函数可微。
BP神经网络算法的优化方法,mtlab代码实例。
2022-12-12 16:39:33 74KB bp神经网络
1