来源于 OpenCV 的官方文档,内容全面,对各种的算法的描述简单易懂,而且不拘泥于长篇大论的数学推导,非常适合想使用OpenCV 解决实际问题的人。
2022-04-06 14:09:21 5.2MB opencv python 算法 人工智能
1
模式识别和机器学习实战- 集成学习- Python实现 - AdaBoost算法 适用于刚刚开始学习机器学习的小伙伴进行的上机实践,本次压缩包的内容是集成学习的AdaBoost算法的代码以及数据集。
2022-04-06 03:09:08 682KB python 算法 机器学习 集成学习
1
计算机图形学作业 单个py文件
2022-04-06 03:03:45 2KB python 算法 开发语言 3d
1
保证能跑
2022-04-06 00:35:50 146KB python 算法 开发语言
1
主要介绍了python如何实现人工蜂群算法,帮助大家更好的利用python进行数据分析,感兴趣的朋友可以了解下
2022-04-03 22:22:09 35KB python 算法 python 人工蜂群算法
1
本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下 基本的算法思路就是:把当前组间距离最小的两组合并成一组。 算法的差异在算法如何确定组件的距离,一般有最大距离,最小距离,平均距离,马氏距离等等。 代码如下: import numpy as np import data_helper np.random.seed(1) def get_raw_data(n): _data=np.random.rand(n,2) #生成数据的格式是n个(x,y) _groups={idx:[[x,y]] for idx,(x,y) in enumerate(_da
2022-03-31 10:52:16 39KB python python算法 可视化
1
前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP。首先假设一个固定位置和宽度、无粘连、无干扰的例子学习一下如何使用Pillow来切割图片。 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20、上20、右40、下70。以此类推可以知道剩下3个数字的切割位置。 代码如下: from PIL import Image p = Image.open(1.png) # 注意位置顺序为左、上、右、下 cuts = [(20,20
2022-03-30 16:31:35 98KB python python算法 图片
1
在上一篇博文Python数据分析(8)—-用python实现数据分层抽样中,实现了实验数据的抽取,那么在本文中,将用上述抽取到的数据进行实验,也就是用决策树进行分类。 在讲解实际的决策树分类之前,需要介绍一下决策树分类的sklearn中决策树模型参数释义: ''' scikit-learn中有两类决策树,它们均采用优化的CART决策树算法。 (1)回归决策树:DecisionTreeRegressor() (2)分类决策树:DecisionTreeClassifier() ''' from sklearn.tree import DecisionTreeRegressor ''' 回归决策树
2022-03-30 13:41:40 103KB python算法 split 决策树
1
1.算法:(设查找的数组期间为array[low, high]) (1)确定该期间的中间位置K(2)将查找的值T与array[k]比较。若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。区域确定如下:a.array[k]>T 由数组的有序性可知array[k,k+1,……,high]>T;故新的区间为array[low,……,K-1]b.array[k]<T 类似上面查找区间为array[k+1,……,high]。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间缩小一半。递归找,即可。 2.python代码: 复制代码 代码如下:#!/usr/bin/python
2022-03-24 16:00:38 37KB python python实例 python算法
1