1、多元回归_LSTM结合PSO算法实现PSO-LSTM多输入单输出(Matlab完整源码+数据) 2、代码运行测试环境为MATLAB2020b,MATLAB实现PSO-LSTM多输入单输出预测。
使用BP神经网络、RBF神经网络以及PSO优化的RBF神经网络进行数据的预测
FIR低通滤波器具有设计简单,易于实现的优点,缺点是只能用于低通滤波器,不能用于高通滤波器,所以,通过粒子群算法对FIR低通滤波器进行优化,提高FIR滤波器的性能
1
以模糊神经网络为基础,结合误差前馈补偿完成了二级倒立摆系统的稳定控制,并采用模拟退火粒子群算法对控制参数进行全局寻优。与基于状态变量合成的模糊神经网络控制器相比,该控制方法不仅解决了多变量系统模糊控制器的“规则爆炸”问题,并且,由于所有状态变量直接参与控制输出,控制精度亦有所提高。仿真结果表明,该控制方案所需规则数目少,响应速度快,有良好的鲁棒性和非线性适应能力。
2022-11-23 21:38:12 1.3MB 自然科学 论文
1
MATLAB实现PSO-BiLSTM粒子群优化长短期记忆神经网络多输入回归预测(完整源码和数据) 数据为多输入回归数据,输入7个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
测试函数shubert是周期测试函数,拥有多个全局最优解,单周期内拥有一个全局最优解,粒子群算法具有收敛速度快,参数设置简单,容易理解的特点,用粒子群算法求解shubert函数,效果较好
1
MATLAB实现PSO-GRU粒子群优化门控循环单元多输入回归预测(完整源码和数据) 数据为多输入回归数据,输入7个特征,输出1个变量。 运行环境MATLAB2020b及以上。
程序中含有pso和aco两种算法,可以实现粒子群优化算法和蚁群优化算法优越性的比较。
2022-11-17 14:26:25 2KB PSO-ACO
1
以前的标题是“另一个粒子群工具箱” 介绍粒子群优化 (PSO) 是一种无导数的全局最优解算器。 它的灵感来自大群简单动物令人惊讶的有组织的行为,例如成群的鸟、鱼群或成群的蝗虫。 该算法中的个体生物或“粒子”是原始的,只知道四件简单的事情:1 & 2)它们自己在搜索空间中的当前位置和适应度值,3)它们以前的个人最佳位置,以及 4)整体“群”中所有粒子找到的最佳位置。 无需计算梯度或 Hessians。 每个粒子根据这些信息不断调整其在搜索空间中的速度和轨迹,在每次迭代中更接近全局最优。 正如在自然界中看到的那样,尽管其单个粒子很简单,但这个计算群显示出非凡的连贯性和协调性。 使用方便如果您已经在使用 MATLAB 全局优化工具箱中包含的遗传算法 (GA),那么这个 PSO 工具箱将为您节省大量时间。 可以使用与 GA 相同的语法从 MATLAB 命令行调用它,并带有一些特定于 PSO
2022-11-17 10:11:36 74KB matlab
1
matlab开发-PSO技术经济分析等混杂可再生能源系统。基于粒子群算法的混合可再生能源系统技术经济分析
2022-11-14 19:02:11 71KB 未分类
1