通过粒子群算法对卷积神经网络结构的参数进行优化,最后在训练集和测试集上进行验证,效果比普通卷积神经网络的精度更高。粒子群算法可以有效高效地为卷积神经网络的超参数搜索提供方案。相比手动设计,粒子群算法通过模拟进化算法的方式,有望找到更佳结构。 粒子群算法可以用于卷积神经网络(Convolutional Neural Network, CNN)的优化。CNN是一种常用于图像识别、语音识别等领域的深度学习模型,它由多个卷积层、池化层和全连接层组成。CNN模型的优化需要调整的超参数很多,包括卷积核大小、卷积核数量、池化大小、学习率等等。因此,使用传统的梯度下降算法可能会陷入局部最优解,而粒子群算法则可以通过全局搜索来寻找更优的解。
2024-01-23 09:07:11 88KB
1
Maltab实现CNN卷积神经网络故障诊断(代码完整,可直接运行,适合2018及以上) 卷积神经网络(convolutional neural network)是具有局部连接、权重共享等特性的深层前馈神经网络,最早主要是用来处理图像信息。 相比于全连接前馈神经网络,卷积神经网络有三个结构上的特性:局部连接、权重共享以及汇聚,这些特性使得卷积神经网络具有很好的特征提取能力,且参数更少。 利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。故障检测和故障定位同属网络生存性范畴。要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。故障诊断就是指故障检测和故障隔离的过程。
2024-01-22 10:02:02 73KB 神经网络
1
core java卷1(原书第8版) java核心技术
2024-01-18 14:01:20 9.68MB core java卷1(原书第8版)
1
1998年我就读于广西民族学院(现为广西民族大学)档案学专业后,才初识"兰台"一词,没想到似乎有点枯燥的"档案"竟然还有这般古韵美的名字。凭着当年女孩的天真和想像,我心目中的"兰台"是个神秘、幽深、还隐隐散发着陈年纸墨香味的地方,那里的意境应该就像兰花幽居深谷一样,静美而清香。带着对"兰台"工作的无限憧憬,我顺利地完成了大学学业。毕业后,我如愿似尝地进入省城单位的机关档案室从事档案管理工作,成为一名"兰台"人。
2024-01-18 09:05:25 935KB 行业研究
1
针对圆柱凸轮式卷缆机构卷缆不整齐、易发生重叠的缺点,设计了一种双向滚珠丝杠式自动卷缆装置。该装置采取增加钢珠及弹簧的方式,有效克服了传统丝杠卷缆装置的缺点。分别对该装置传动轴螺距、摆线距离、压力角、弹簧力、钢珠个数等参数进行计算确定,为后续自动卷缆装置的设计制造提供参考。该装置已在矿用梭车中得到应用,使用效果良好。
2024-01-16 18:37:38 179KB 行业研究
1
基于matlab的卷积码编译码仿真 本文简明地介绍了卷积码的编码原理和译码原理。并在SIMULINK模块设计中,完成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。最后,通过在仿真过程中分别改变卷积码的重要参数来加深理解卷积码的这些参数对卷积码的误码性能的影响。经过仿真和实测,并对测试结果作了分析。
2024-01-15 16:34:57 409KB matlab
1
基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 基于卷积神经网络实现MNIST手写数字数据集识别应用+GUI可视化源码+数据(课程设计).zip已获导师指导并通过的97分的高分课程设计项目,可作
2024-01-12 15:26:14 3.54MB 课程设计 源码 python
深入理解操作系统,适用于网络工程、网络技术、软件工程等学生。此卷为历年高校考试试卷,具有参考学习价值。
1
UNIX网络编程第二卷书中的源代码.
2024-01-08 07:58:40 133KB UNIX网络编程第二卷
1
扩散卷积循环神经网络:数据驱动的交通预测 这是以下论文中Diffusion Convolutional Recurrent Neural Network的TensorFlow实现: Yaguang Li、Rose Yu、Cyrus Shahabi、Yan Liu,,ICLR 2018。 要求 scipy>=0.19.0 numpy>=1.12.1 熊猫>=0.19.2 皮亚尔 统计模型 张量流>=1.3.0 可以使用以下命令安装依赖项: pip install -r requirements.txt 数据准备 洛杉矶(METR-LA)和湾区(PEMS-BAY)的交通数据文件,即metr-la.h5和pems-bay.h5 ,可以在或,需要放入data/文件夹。 *.h5文件使用HDF5文件格式将数据存储在panads.DataFrame 。 下面是一个例子: 传感器_0 传
2024-01-07 22:17:19 10.14MB time-series
1