对噪声背景中插值FFT 方法估计正弦信号频率的精度进行了研究,导出了不加窗和加Hanning 窗时频 率估计均方根误差与信噪比及FFT 长度的关系式;分析了不加窗情况下当信号频率接近FFT 频率分辨率!f 的整数倍 时,由于插值的方向错误对频率估计精度的影响;指出了不加窗时该方法在噪声背景中的频率估计误差远远大于文 [2]中用一个特定的纯测试信号得到的结果;讨论了加窗对频率估计误差的影响. 最后给出了Monte CarIo 模拟实验与 理论分析的对比结果.
2023-03-26 14:22:25 246KB FFT 正弦信号
1
在蓄电池性能监测过程中,接收的信号都是比较微弱的低频信号,而且为了得到更多的信息,往往向蓄电池施加多个频率的激励。因此,设计带通滤波器以提高抗干扰能力,而且中心频率要可调。开关电容滤波器可实现低通、高通、带通和带阻滤波功能 ,而且中心频率可调节,文中采用了LTC1068-200开关电容滤波器集成模块进行电路设计 ,时钟频率由CD4046锁相环控制。仿真结果表明本文设计的滤波器通带宽度可以达到5 Hz,中心频率从 10 Hz到 1 kHz可调节 ,满足实际需要。
1
引言 高精度时间基准已经成为通信、电力、工业控制等领域的基础保障平台之一。时统设备通常采用晶体振荡器作为频率标准,但都由于晶振老化和温度变化等原因导致其频率长期稳定度差。随着GPS技术的发展和应用,利用GPS作为精确时间源的优良特性来同步本地时钟信息。但在实践中由于GPS提供的1pps信号经常受到干扰,如磁场干扰,多径误差等,造成误将干扰信号作为正常的1pps信号或GPS信号跟踪丢失等问题,导致测控系统出现误差过大现象,精度和稳定性难以保证。故1pps信号不能直接从GPS接收板作为精确的同步信号,必须通过技术处理,使其保持高精度和工作连续稳定性。目前针对上述问题文献多使用分立器件或单片机作为主控制器,需要添加外围时间间隔测量或鉴相等电路,不适宜用于压控晶振频率较高的场合。 本文是利用GPS提供的1pps秒脉冲信号,为解决上述问题,在FPGA(fieldprogrammablegatearray)的基础上利用干扰秒脉冲信号消除和偏差频率平均运算等方法,减少外围电路,既消减了GPS时钟信号的随机干扰误差,又消除了本地晶振时钟信号的累计误差,从而控制本地压控晶振输出频率,提高晶振的长期稳
2023-03-20 23:14:12 163KB 频率 晶振 FPGA 文章
1
研究了一种基于高非线性光纤(HNLF)中交叉相位调制效应的全光频率上转换射频耦合到光纤无线通信(ROF)系统。数值计算结果表明, 由于交叉相位调制引起的调制不稳定性, 波长1.54 μm, 重复频率为40 GHz的抽运光可使波长为1.56 μm, 载有速率为2.5 Gbit/s的非归零码作为下行链路数据的弱信号光光波分裂, 产生与载波距离为40 GHz且与载波相干的两个一阶调制边带, 抽运光脉宽、抽运光功率和光纤长度对载波与边带功率差有较大影响。仿真实验结果证实了以上原理, 速率为2.5 Gbit/s的数据信号在高非线性光纤中被上转换到40 GHz毫米波上。信号光功率为0 dBm时, 得到的优化光纤长度为600 m, 抽运光功率为17 dBm。
2023-03-20 15:22:59 1.74MB 光通信 光纤无线 全光频率 交叉相位
1
4.5 频率跳变信号的产生 在前面的叙述中,对于频率跳变系统的发射信号已多次提及,并给出了频率 跳变系统发射机的数学模型。需要说明的是第 1 章给出的频率跳变系统的数学模 型是用来理论分析的数学抽象模型,在实际工程中仅作为系统设计的参考。 频率跳变系统信号的产生,很少采用信息信号直接去调制频率跳变的载波, 原因有几点:(1) 当系统工作的射频频率较高时,实际工程中在较高频率上实现 信号的调制是有一定难度的。(2) 信息信号通过调制实现频谱搬移的过程中,不 可避免的要产生一些带外分量。调制器根本无法抑制这些带外分量,通常是在调 制后加接带通滤波器来控制已调信号的频谱。(3) 调制器的特性或参数和工作频 率有密切的关系,载波在如此大的范围内变化,已调信号在各个频道上的特性很 难保证完全一致。 频率跳变系统信号的产生,通常采用在发射机的中频上进行信息信号的调 制,再利用变频器上变频将中频已调信号的频谱搬移到射频段,变频器的本振信 号由频率合成器来提供,参见图 4-25。由于频率合成器输出信号的频率是跳变的, 上变频器输出的带通信号的中心频率将随着频率合成器输出信号频率的变化而 变化,从而完成了射频信号载波频率的跳变。 调制器 混频器 带通 滤波器 信息信号 射频信号 发中频载波 带通 滤波器 频率 合成器 指令 译码器 扩频 发生器 跳频器 图 4-25 频率跳变系统信号产生原理方框图 由图 4-25 可看出,频率跳变扩频系统信号的产生和常规系统相比较,区别 在于参与变频的本振信号的频率是跳变的,所以说跳频器是频率跳变扩频通信系 统的核心器件。 4.5.1 跳频器 频率跳变扩频系统的跳频器是由伪随机码发生器、指令译码器和频率合成器 组成。可供选取的频率数和频率跳变速率是决定整个频率跳变系统性能的主要技 术参数。对跳频器的主要要求有: (1) 频率范围 频率范围是指频率合成器的工作频率范围,或频率合成器输出信号的频率范 围。通常要求在要求的频率范围内,在任何指定的频率(频道)上,频率合成器 都能正常的工作,并且其电气性能都能满足质量的要求。频率范围越大,可供选 取的频率数就越多,跳频信号的频谱扩展的越宽,扩频处理增益 越大。 PG (2) 频率间隔 频率合成器的输出信号的频谱是不连续。两个相临频率之间的 小间隔 ,即频率分别率,应满足频率跳变系统跳频间隔 的要求。 minF f 100
2023-03-18 13:58:42 3.13MB 射频
1
针对区域互联电力系统受到风电及负荷扰动后,系统频率会出现大幅度波动的问题,提出一种基于云神经网络自适应逆系统的多区域互联电力系统负荷频率控制方法。在分析单一区域电力系统有功输出特性的基础上,建立计及多区域有功输出的互联电力系统负荷频率控制模型。采用自适应逆控制有效解决系统响应和扰动抑制的矛盾。将云模型引入自适应逆系统构建云神经网络辨识器。利用云模型在处理模糊性和随机性等不确定性方面的优势,进一步提高神经网络的辨识能力。仿真结果表明,所设计的云神经网络自适应逆系统不仅可以得到好的动态响应,还可以使风电及负荷引起的扰动减小到最小。
1
对于频率估计,采用了插值法,其中信号参数,采样的条件都可以非常灵活的设置
2023-03-16 20:18:12 5KB 频谱校正 插值法
1
基于混沌原子搜索优化的电力系统(HPS)负载频率自动控制(ALFC)Matlab代码.zip
2023-03-16 08:27:52 28KB