写在开头:今天开始逻辑回归的内容分享,仍然是参考学习公众号机器学习实验室的思路和内容,尽量在实现的环节多加一些自己的思考,吸收一下。
内容安排
线性回归(一)、逻辑回归(二)、K近邻(三)、决策树值ID3(四)、CART(五)、感知机(六)、神经网络(七)、线性可分支持向量机(八)、线性支持向量机(九)、线性不可分支持向量机(十)、朴素贝叶斯(十一)、Lasso回归(十二)、Ridge岭回归(十三)等。
今天就是从逻辑回归的内容进行分享,逻辑回归的思想其实在现实生活中很常见,比如通过一段编程的能力来定义这个人是不是高手如何,其实里面的自变量比如有算法的能力、代码的能力等等,这其实都和逻辑回归很
1