解析解法和梯度下降法实现线性回归预测2014年南京房价.zip
2021-11-26 09:11:07 2KB python 机器学习 线性回归
1
Rosenbrock函数的定义如下: 其函数图像如下: 我分别使用梯度下降法和牛顿法做了寻找Rosenbrock函数的实验。 梯度下降 梯度下降的更新公式: 图中蓝色的点为起点,橙色的曲线(实际上是折线)是寻找最小值点的轨迹,终点(最小值点)为 (1,1)(1,1)。 梯度下降用了约5000次才找到最小值点。 我选择的迭代步长 α=0.002α=0.002,αα 没有办法取的太大,当为0.003时就会发生振荡: 牛顿法 牛顿法的更新公式: Hessian矩阵中的每一个二阶偏导我是用手算算出来的。 牛顿法只迭代了约5次就找到了函数的最小值点。 下面贴出两个实验的代码。 梯度下降
2021-11-23 17:10:22 167KB br c enb
1
------------:)----------采用MATLAB语言编程,基于梯度下降法实现多元线性回归模型,并与正规方程计算结果进行对比。
2021-11-23 10:42:22 29.87MB matlab 多元线性回归 梯度下降 正规方程
1
nn束 多层感知器和三个优化器的实现:具有NAG的随机梯度下降,具有标准标准近邻束方法和 安装 首先,您需要克隆此存储库: $ git clone https://github.com/vdecaro/nn-bundle $ cd nn-bundle 使用此存储库需要安装conda 。 需要使用python3.7的新环境: $ conda create -n yourenvname python=3.7 $ conda activate yourenvname 下一步是包括将Gurobi安装到您的环境中的渠道: $ conda config --add channels http://conda.anaconda.org/gurobi 现在,您只需启动以下命令即可将所需的软件包安装到您的环境中: $ conda install --file requirements.txt
2021-11-23 09:37:43 733KB Python
1
本专栏是书《深度学习入门》的阅读笔记一共八章: 第一章深度学习中的Python基础。主要讲解了深度学习将要用到的python的基础知识以及简单介绍了numpy库和matpoltlib库,本书编写深度学习神经网络代码仅使用Python和numpy库,不使用目前流行的各种深度学习框架,适合入门新手学习理论知识。 第二章感知机。主要介绍了神经网络和深度学习的基本单元感知机。感知机接收多个输入,产生一个输出,单层感知器可以实现与门,或门以及与非门,但是不能实现异或门,异或门的实现需要借助多层感知机,这也就是说,单层感知机只能表示线性空间,而非线性空间的表示需要借助多层感知机。 第三章神经网络——基于n
2021-11-19 15:19:07 94KB mp num numpy
1
梯度下降法是机器学习算法更新模型参数的常用的方法之一。 相关概念 梯度 : 表示某一函数在一点处变化率最快的方向向量(可理解为这点的导数/偏导数) 样本 : 实际观测到的数据集,包括输入和输出(本文的样本数量用 m 表述,元素下标 i 表示) 特征 : 样本的输入(本文的特征数量用 n 表示,元素下标 j 表示) 假设函数 : 用来拟合样本的函数,记为 $ h_θ(X) (θ 为参数向量, X 为特征向量)$ 代价函数 : 用于评估模型拟合的程度,训练的目标是最小化代价函数,记为 J(θ)J(θ)J(θ) 通过代价函数使得假设函数更好的拟合给定数据 线性假设函数 : $ h_θ(X) = θ_
2021-11-16 11:13:23 69KB 梯度 梯度下降 特征向量
1
机器学习算法,线性回归于逻辑回归推导过程及代码
2021-11-15 18:55:04 342KB 算法
1
主要为大家详细介绍了基于随机梯度下降的矩阵分解推荐算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2021-11-14 11:02:08 109KB python 梯度下降 矩阵分解
1
matlab 代码梯度下降法 Machine Learning NJUST研究生硕士课程Machine Learning,主讲人夏睿。 代码有三个版本:C++、Python、Matlab。由于C++图形库比较麻烦,使用Qt又多此一举,所以C++版本不附带图例。 C++ must require: cmake>=3.15 C++>=11 armadillo==9.900.3 Python must require: python>=3.7.7 numpy>=1.19.1 matplotlib>=3.3.1 jupyter>=1.0.0 Matlab must require: Matlab>=R2016a 课程地址: Project1: Nanjing Housing Price Prediction 基于GD(梯度下降)算法以及正规方程解,使用线性回归建立模型,预测南京2014年房价。
2021-11-13 19:51:50 6.93MB 系统开源
1
机器学习 这些是我用一些数据集实现的一些流行的机器学习算法。 其中包括线性回归(多变量)的实现,逻辑和线性回归的梯度下降,决策树,随机森林,朴素贝叶斯。 它们都是用python 3.5编写的。
2021-11-13 19:48:43 4.12MB JupyterNotebook
1