悬浮物质量浓度是黄河口海域重要的水质和水环境监测参数之一,直接影响着水面以下光场的分布!进而影响水体的初级生产力和水域生态环境。本文基于2011年6-7月和11-12月共计89组现场实测悬浮物质量浓度和光谱数据!分析了黄河口及其附近海域不同悬浮物质量浓度的水体光谱特征,尝试利用多种波段组合建立悬浮物质量浓度遥感反演算法。结果表明865nm波段与波段比655nm/560nm组合形式算法反演结果最优!算法相关系数R2为0.95,平均相对误差为25.65%。将算法应用于2014-2016年共7景Landsat 8 OLI遥感影像!分析了不同年份黄河口悬浮物质量浓度的时空分布特征!黄河口海域悬浮物质量浓度分布总体呈现近岸高!离岸低的特点!不同时期悬浮物质量浓度量值上有显著变化。.
2026-01-18 15:33:57 4.13MB 研究论文
1
功能特点 标定功能: 圆形标定:使用已知半径的圆形物体进行标定 矩形标定:使用已知尺寸的矩形物体进行标定 自定义标定:支持自定义物体标定(开发中) 测量功能: 圆形测量:测量圆形零件的半径 矩形测量:测量矩形零件的长度和宽度 支持与期望尺寸比较,计算误差 支持保存测量结果 输入方式: 图片输入:上传图片进行标定或测量 摄像头输入:使用摄像头实时捕获图像进行标定或测量 安装说明 确保已安装Python 3.7或更高版本 克隆或下载本项目到本地 安装依赖包: pip install -r requirements.txt 使用方法 运行应用: streamlit run app.py 在浏览器中打开显示的URL(通常是http://localhost:8501) 使用流程: 用户登录: 首次使用需要注册账号 使用已有账号登录系统 根据用户权限访问相应功能 首先进行标定: 图片模式:选择"标定"模式,上传标定图片,输入实际尺寸,点击"开始标定" 摄像头模式:选择"标定"模式,点击"打开摄像头",调整物体位置,输入实际尺寸,点击"开始标定" 然后进行测量: 图片模式:选择"测量"模式,上传测量图片,输入期望尺寸,点击"开始测量" 摄像头模式:选择"测量"模式,点击"打开摄像头",调整物体位置,输入期望尺寸,点击"开始测量" 查看测量结果,可选择保存结果 文件结构 app.py:主应用程序 auth.py:用户认证和权限管理模块 home_page.py:首页界面和导航模块 image_processing.py:图像处理模块 camera_utils.py:摄像头操作和图像采集 text_utils.py:文本处理和格式化 requirements.txt:依赖包列表 calibration/:存储标定数据 results/:存储测量结果 users/:用户数据和配置文件存储
1
基于yolov5识别算法实现的DNF自动脚本.zip
2026-01-18 10:43:10 27.28MB
1
由于提供的信息不足,无法生成详细的文章知识。需要更多的文件信息才能提供相关的知识点。
2026-01-18 06:04:48 303.91MB harmonyos harmonyos
1
内容概要:本文探讨了如何利用遗传算法优化风电混合储能系统的容量配置,以降低独立风力发电系统中储能装置的生命周期费用。文中建立了以生命周期费用最小化为目标函数、负荷缺电率为约束条件的优化模型,结合蓄电池储能特性,利用风电和负荷24小时的发用电数据,研究了包含蓄电池的混合储能系统的能量管理策略。通过MATLAB仿真平台,采用改进的遗传算法对混合储能系统的容量进行优化配置,经过多次迭代得到最优方案。算例分析显示,优化后的系统显著降低了经济成本,提升了供电可靠性。 适合人群:从事风力发电、储能系统优化以及遗传算法研究的专业人士和技术人员。 使用场景及目标:适用于需要优化风电混合储能系统容量配置的研究项目和实际工程应用,旨在降低成本、提高系统可靠性和经济效益。 其他说明:本文不仅提供了详细的理论背景和建模思路,还附带了高质量的MATLAB代码,有助于读者深入理解和实践遗传算法在储能系统优化中的应用。
2026-01-17 21:31:27 271KB
1
嵌入式系统开发_基于STM32单片机与WiFi物联网技术_集成MQ-5燃气传感器_DS18B20温度传感器_MO-7烟雾传感器_红外对管入侵检测_液晶显示与蜂鸣器报警_手机远程监控.zip前端工程化实战项目 在当代科技迅猛发展的背景下,物联网技术已广泛应用于各个领域,从家居安全到工业控制,其便捷性与高效性不断推动着技术革新的步伐。本项目集成了STM32单片机与WiFi物联网技术,并融合了多种传感器与报警设备,旨在构建一个完整的智能家居安全系统。通过MQ-5燃气传感器、DS18B20温度传感器以及MO-7烟雾传感器,系统能够实时监控环境中的燃气浓度、温度变化和烟雾浓度。红外对管入侵检测技术则可以感应非法闯入行为,提升家居的安全级别。此外,液晶显示屏和蜂鸣器报警的设计,为用户提供直观的警告信息和听觉警报。最关键的是,通过手机远程监控功能,用户可以随时随地通过手机APP查看家中安全状况,并作出相应的远程操作。 在技术层面,本项目基于STM32单片机进行开发。STM32系列单片机以其高性能、低功耗、丰富的外设接口以及低成本等优势,在嵌入式系统领域内占据了重要的地位。它支持多种通信协议,包括WiFi通信,这使得其非常适合用于构建物联网应用。本项目的WiFi通信功能允许设备连接至家庭网络,并通过互联网与用户的手机或其他智能设备进行数据交换。 在实际应用中,系统通过传感器收集的数据首先由STM32单片机处理,然后通过WiFi模块发送至服务器或直接推送到用户的手机APP上。如果检测到异常情况,如燃气泄漏、温度异常上升或者有入侵行为,系统会通过液晶显示屏显示警告信息,并通过蜂鸣器发出声音警报。同时,手机APP将接收到推送通知,用户可以立即得知家中状况并采取相应的措施。 项目的成功实施,需要具备一定的电子电路知识、编程能力以及网络通信技术。开发者需要熟练掌握STM32单片机的编程,了解WiFi模块的配置与使用,并且能够处理各种传感器的信号。此外,对手机APP开发也应有一定的了解,以便于实现远程监控功能。 项目文件中包含的“附赠资源.docx”文档可能提供了项目的详细说明、电路图、必要的代码以及使用教程等,方便用户深入了解和操作;“说明文件.txt”则可能是一个简单的项目介绍或者快速入门指南;而“stm32_Home_Security-master”目录则极有可能包含了项目的源代码、相关配置文件以及可能需要的开发工具链或库文件。通过这些文件的组合使用,用户将能够快速地搭建和部署整个智能家居安全系统。 嵌入式系统开发基于STM32单片机与WiFi物联网技术,集成多种传感器与报警装置,构建了一个综合性的智能家居安全解决方案。该项目不仅提升了居住的安全性,也为物联网技术在家庭安全领域的应用提供了新的思路和范例。
2026-01-17 16:15:36 53.62MB
1
# 基于Python的机器学习气温预测系统 ## 项目简介 本项目是一个基于Python的机器学习气温预测系统,旨在利用历史天气数据预测未来一天的气温。系统使用了神经网络模型,将前一天和上一年同一天的气温作为输入特征,来预测当天的气温。 ## 项目的主要特性和功能 1. 数据加载与处理系统能够加载CSV格式的天气数据,并进行预处理和可视化,包括数据清洗、异常值处理、数据转换等。 2. 模型训练系统使用神经网络模型进行气温预测,可自定义模型结构、损失函数和优化器。 3. 模型可视化系统可以可视化模型预测结果与实际数据的对比,帮助用户了解模型的性能。 4. 模型保存与加载系统能够在训练过程中保存最佳模型参数,并在需要时加载模型进行预测。 ## 安装使用步骤 1. 下载项目的源码文件。 2. 安装必要的Python库,如PyTorch、matplotlib等,可以使用pip进行安装。 3. 修改代码中的文件路径,确保数据文件和模型文件的路径正确。
2026-01-17 14:32:52 999KB
1
在当今数字化时代,随着计算机视觉技术的飞速发展,交通标志识别系统在智能交通管理和自动驾驶领域中扮演着越来越重要的角色。MATLAB,作为一种高效的数学计算和仿真软件,其在图像处理和模式识别方面具有独特的优势,使得它成为开发交通标志识别系统的一个理想平台。 基于MATLAB的交通标志识别系统主要通过以下步骤实现:需要对交通标志进行图像采集,这通常涉及到使用高分辨率相机对各类交通标志进行拍照,形成包含交通标志信息的图像数据库。接下来,系统会运用MATLAB提供的图像处理工具箱对采集到的图像进行预处理,包括图像去噪、灰度化、二值化以及边缘检测等,以消除图像中的干扰信息,突出交通标志的特征。 预处理后的图像需要进行特征提取,这是识别过程中的关键步骤。在MATLAB环境下,可以使用各种算法提取交通标志的特征,如颜色特征、形状特征和纹理特征等。例如,对于圆形的停车标志,系统可以识别其轮廓特征;对于多边形的限速标志,则可能侧重于角度和顶点信息的分析。 在特征提取完成后,便进入了模式识别阶段。MATLAB提供了多种机器学习工具,可以用来训练和测试交通标志的分类器。常用的算法包括支持向量机(SVM)、神经网络(NN)和决策树等。训练过程中,算法会基于提取的特征对交通标志进行学习,并建立一个分类模型。通过不断的迭代和优化,最终得到一个高准确率的识别模型。 此外,为了提高交通标志识别系统的鲁棒性,MATLAB还支持利用深度学习框架进行训练。深度学习中的卷积神经网络(CNN)特别适合图像识别任务,因为它能够自动和有效地从大量图像数据中学习复杂的特征表示。通过构建和训练深度神经网络模型,可以使交通标志识别系统在各种复杂的实际环境中保持较好的识别性能。 测试阶段,系统将采用训练好的模型对新的交通标志图像进行识别,输出识别结果。这通常涉及到将待识别的图像输入到训练好的分类器中,分类器根据图像的特征来判断该图像属于哪一个类别的交通标志,并给出相应的标签。 值得注意的是,交通标志识别系统的性能不仅取决于算法的先进性和模型的准确性,还依赖于系统在真实世界中的实时性和稳定性。因此,在设计系统时,还需要考虑优化算法的运行效率,减少计算资源的消耗,并确保在不同的天气和光照条件下都有良好的识别效果。 基于MATLAB的交通标志识别系统在智能交通系统中发挥着至关重要的作用。通过MATLAB强大的图像处理和机器学习工具,可以有效地开发出一个准确、可靠且高效的交通标志识别系统,为智能交通管理和自动驾驶技术的发展提供有力支持。
2026-01-17 14:06:28 1.35MB
1
基于Proteus7.10仿真DAC102S085芯片
2026-01-16 21:09:47 1.07MB DAC102S085 Proteus仿真
1
# 基于ESP32的MQTT通信控制LED系统 ## 一、项目简介 本项目是一个基于ESP32的MQTT通信控制LED系统,通过MQTT协议实现远程对ESP32内置LED灯的控制。项目主要包含了两个ESP32项目,都使用Arduino Genuino IDE进行开发,并运行在HiveMQ MQTT broker上。 ## 二、项目的主要特性和功能 1. WiFi连接通过WiFi连接到MQTT broker(HiveMQ)。 2. MQTT通信使用MQTT协议进行通信,实现对ESP32内置LED灯的控制。 3. 安全通信支持TCPTLS连接,保障通信安全。 4. 调试支持可在串口监视器上查看设备的运行状态和错误信息,便于调试。 ## 三、安装使用步骤 1. 环境准备 确保已安装Arduino Genuino IDE和ESP32开发板支持。 下载项目文件并解压。 2. 配置文件修改
2026-01-16 20:20:08 2.93MB
1