### 分布式锁原理介绍 #### 一、分布式锁概览 **分布式锁**是一种用于在分布式系统中控制多个节点对共享资源进行访问的技术。它主要用于解决多节点间并发访问同一资源时产生的竞争问题,确保资源的一致性和完整性。 #### 二、分布式锁的核心概念 1. **互斥特性**:确保同一时刻只有一个节点能够获取锁,从而独占资源。 2. **锁安全性**:确保锁的获取与释放过程是安全可靠的。 3. **锁失效机制**:防止因某些异常情况导致锁无法正常释放,从而引发死锁等问题。 4. **阻塞锁特性**:如果当前锁已被其他节点获取,请求锁的节点需要等待直至锁被释放。 5. **公平锁的特性**:按照请求顺序分配锁,避免某些节点长期等待。 6. **高可用性**:即使部分节点失败,也能保证锁服务的连续性和稳定性。 7. **高性能**:在高并发场景下保持良好的响应时间和吞吐量。 #### 三、分布式锁的应用场景 1. **12306网站售票**:在高峰时段,大量用户同时购票,分布式锁可以有效防止票务冲突。 2. **共享文档平台编辑**:多人同时在线编辑文档时,需要确保同一时间只有一人能编辑某段内容。 3. **全局自增主键**:在分布式数据库系统中,为每条记录分配唯一ID时,需要使用分布式锁来避免ID冲突。 #### 四、分布式锁的实现 ##### 1. 基于数据库实现分布式锁 - **利用MySQL唯一索引特性**:通过在表中创建唯一索引来实现分布式锁,但这种方式在高并发场景下性能较差,且实现较为复杂,因此较少在生产环境中使用。 ##### 2. 基于Redis实现分布式锁 - **Redis为单进程单线程模式**:这种模式可以将并发访问变为串行访问,提高数据的一致性。 - **使用Redis命令实现**:通过`SETNX`(Set If Not eXists)命令尝试设置一个键值对,如果键不存在则设置成功并返回1,否则返回0;结合`EXPIRE`命令为锁设置一个超时时间。 - **锁的生命周期管理**:设置锁时使用随机生成的UUID作为锁的值,以便解锁时进行验证;同时使用`EXPIRE`命令为锁设置超时时间,以防持有锁的客户端崩溃后锁无法正常释放。 ##### 3. 基于ZooKeeper实现分布式锁 - **ZooKeeper节点**:ZooKeeper中的节点(Znode)是数据的基本单元,分为多种类型:持久节点、持久有序节点、临时节点和临时有序节点。这些节点可以构成树状结构,便于管理和访问。 - **节点监听**:客户端可以在特定节点上设置监听器,当节点的状态发生变化时,会触发监听器,从而通知客户端进行相应的处理。 - **基本原理**:客户端尝试创建一个临时有序节点,若创建成功,则检查是否有排名比自己小的兄弟节点,如果没有则获得锁;如果有,则等待该兄弟节点被删除。这样,通过创建和删除临时有序节点的方式,实现了分布式锁的功能。 #### 五、分布式锁方案对比 - **基于数据库**:实现相对复杂,性能较低,适合于对数据一致性要求极高但并发量不大的场景。 - **基于Redis**:实现简单,性能较好,适用于大多数高并发场景。但在集群环境下可能遇到脏数据问题,可通过Redlock算法等高级方案解决。 - **基于ZooKeeper**:实现机制更为复杂,但提供了丰富的功能和高度的可靠性,适用于需要高度一致性和可靠性的场景。 选择合适的分布式锁实现方案需要根据具体的应用场景、性能需求和可靠性要求来进行权衡。在实际应用中,可以根据项目的具体情况选择最为合适的方法。
2025-09-29 16:56:52 1.8MB 分布式 zookeeper
1
捷联惯性导航系统(SINS)是一种不依赖外部信息、可独立运行的导航系统。它通过加速度计和陀螺仪等惯性传感器测量载体的运动状态,并利用一系列算法计算出载体的位置、速度和姿态信息。组合导航是将SINS与其他导航系统(如全球定位系统GPS、天文导航等)组合起来,利用各自的优势,提高导航精度和可靠性。 捷联惯导算法是实现SINS的核心,包括姿态算法、更新算法和误差分析等。姿态算法主要涉及姿态更新的数学模型,通常采用四元数表示法来解决三维空间中姿态更新的非奇异性和计算量问题。姿态更新算法会利用陀螺仪的角速度信息,通过数学变换和积分,实现对载体姿态的实时计算。更新算法还包括速度和位置的更新,通常通过加速度计测量值的积分来实现速度更新,再通过速度与时间的积分来计算位置信息。 捷联惯导系统中的误差来源多样,包括传感器误差、安装误差、温度变化引起的误差等。误差分析是为了了解这些误差对导航精度的具体影响,进而采取相应的补偿措施。例如,误差方程会考虑载体动力学模型和传感器特性,利用数学方法建立误差模型,通过分析误差模型,找到误差的来源,并进行误差补偿。 卡尔曼滤波是一种有效的动态系统状态估计方法,它在SINS中有广泛应用。卡尔曼滤波原理是基于系统模型和观测模型,通过递推最小二乘法,对系统的状态进行最优估计。卡尔曼滤波方程是处理不确定系统状态估计问题的数学模型,包括状态更新和误差协方差的更新两个步骤。连续时间随机系统的离散化和连续时间卡尔曼滤波的应用,让卡尔曼滤波能够处理更广泛的动态系统模型。此外,卡尔曼滤波的变种算法,如遗忘滤波、平方根滤波、自适应滤波等,都是为了提高滤波在特定情况下的性能。 初始对准是SINS导航前必须进行的一个步骤,目的是确保导航系统启动时姿态角的准确性。初始对准方法包括矢量定姿、解析粗对准和间接粗对准等。矢量定姿原理是基于已知方向的参考矢量来确定载体的初始姿态。解析粗对准方法利用数学模型解析计算姿态角,而间接粗对准方法则通过间接测量或观测来获取姿态信息。精对准是在粗对准基础上的进一步精确化,要求更高的精度。 组合导航技术的发展,使得SINS可以与多种其他导航系统结合,以弥补单一系统在精度、成本、可用性等方面的局限。惯性/卫星组合导航可以利用卫星提供的精确位置和时间信息,进行误差补偿,提升系统性能。车载惯性/里程仪组合导航是一种成本较低的导航解决方案,通过里程仪测量车辆行驶的距离,与惯性传感器数据相结合,进行航位推算。低成本姿态航向参考系统(AHRS)通常用于消费电子领域,通过对地磁场的测量,实现对载体姿态的估计。 由于惯性技术的广泛应用,相关的研究和开发队伍不断壮大,促使惯性技术不断进步。高校学生、爱好者和工程技术人员都对加入惯性技术的研发表现出浓厚的兴趣。严恭敏和翁浚编著的这本讲义,为读者提供了一个系统而深入的理解捷联惯导算法和组合导航原理的机会,并能够将这些基本算法应用于实际问题解决中。
2025-09-29 10:53:49 28.52MB
1
自动控制原理是研究如何使系统在各种扰动和环境变化下达到和维持某一特定工作状态的科学。本篇文档针对自动控制原理第2版的习题全解及MATLAB实验,详细解析了第1章和第2章的习题内容,涵盖了控制系统的基本概念、组成、工作原理和常用术语,以及开环控制系统与闭环控制系统的比较,负反馈作用,闭环系统特征,控制系统职能方框图的绘制方法,以及自动控制系统的基本要求等关键知识点。 开环控制系统与闭环控制系统是自动控制系统中最基本的两种类型。开环控制系统结构简单,系统稳定性好,调试方便,成本较低,适合在输入量与输出量关系固定,扰动因素不大或可预测并补偿的情况下采用。然而,开环系统对元器件的精度要求较高,且当受到系统外部扰动或内部元件参数变化时,系统不能自动进行补偿,抗干扰性能差。闭环控制系统,又称为反馈控制系统,具有抑制扰动能力强,对参数变化不敏感的优点,可以实现较高的控制精度和动态性能。闭环系统的引入增加了系统的复杂性,参数选取不当可能导致系统振荡甚至失稳,是自动控制理论和系统设计需要特别注意的问题。 自动控制系统通常由多个环节组成,包括给定元件、测量反馈元件、比较元件、放大元件、执行元件、校正元件以及被控对象。给定元件提供期望的控制输入信号;测量反馈元件测量被控量并产生相应信号反馈;比较元件比较控制量与反馈量产生偏差信号;放大元件对偏差信号进行放大;执行元件操纵被控对象;校正元件用于改善系统性能;被控对象是控制系统所要控制的目标。各个环节在控制系统中扮演不同的角色,协同工作以实现系统的控制目标。 控制系统的基本要求包括稳定性、控制精度和动态性能。系统稳定性要求系统能够保持在某一工作状态或在受到扰动后能够返回到稳定状态。控制精度要求系统在稳定状态下,输出与期望值的偏差尽可能小,即稳态误差要小。动态性能则要求系统对输入变化的响应过程平稳且迅速,能够快速达到新的稳定状态。 通过本篇文档的详细解析,可以深入理解自动控制系统的基本概念和工作原理,掌握开环和闭环控制系统的特征与区别,以及如何绘制控制系统职能方框图等关键内容。这对于学习和应用自动控制原理具有重要的指导作用。
2025-09-28 16:23:13 2.68MB
1
隔离线性采样系统是一种电子设备,它将模拟信号转换为数字信号,以便在数字系统中处理。这类系统在工业控制系统中非常常见,因其能够提供准确且可靠的信号传输,同时保持信号源与接收端之间的电气隔离。 系统原理方面,隔离线性采样系统通常包含模拟电路部分和数字电路部分。模拟部分负责接收外部模拟信号,比如传感器的信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。数字部分则负责处理这些数字信号,比如进行滤波、放大、数据转换等操作。整个过程中,隔离是通过隔离器或光耦合器实现的,确保高电压或不稳定的信号不会影响到系统的其他部分。 PCB(Printed Circuit Board,印刷电路板)是电子设备中不可或缺的组件,它将各种电子元件连接起来,形成电路。在隔离线性采样系统中,PCB设计必须考虑信号完整性、电源管理、热管理、电磁兼容性等因素。PCB设计的好坏直接影响到系统的性能和可靠性。设计时,工程师需要使用专业的EDA(Electronic Design Automation,电子设计自动化)软件来布局和布线,确保电路在物理空间中的合理布局。 代码部分,即是指隔离线性采样系统中固件或软件部分。在硬件层面,可能需要编写固件代码来配置ADC的工作模式、读取数据、处理数据等。在软件层面,可能需要开发相应的程序来解释和显示采样数据,或者与更高级的系统进行通信。编程语言通常涉及C/C++、汇编语言等,这取决于所使用的微控制器或处理器。 4~20mA是一个常用的工业信号标准,它表示一个模拟信号的范围,其中4mA代表信号的最小值,20mA代表信号的最大值。这个标准在工业自动化领域广泛使用,因为它能提供稳定的信号传输,同时对线路电阻变化不太敏感,且有较好的抗噪声能力。隔离线性采样系统通常会提供对4~20mA信号的接收和处理能力。 隔离线性采样系统是一个集成了模拟信号处理、数字信号处理、电路板设计、编程和工业信号标准的复杂电子系统。它在各种自动化控制系统中扮演着关键角色,保证了信号的准确采集与稳定传输。
2025-09-28 15:13:25 4.53MB 4~20mA 隔离采样
1
### MSB2521 GPS 导航仪原理图(84H)解析 #### 一、概述 本文档提供了一份详细的MSB2521 GPS导航仪原理图的分析,该图来源于一家专业的方案公司,并公开供学习使用。这份资料涵盖了MSB2521芯片及其周围电路的设计细节,包括了GPIO配置、SPI接口、UART端口等关键部件的布局与功能介绍。 #### 二、MSB2521芯片简介 MSB2521是一款高性能的导航仪主控芯片,集成了多种功能模块,适用于PND(便携式导航设备)、CMMB(中国多媒体广播)以及AV等多种应用场合。它支持多种外部存储器接口,如NOR Flash、SDIO等,并提供了丰富的GPIO端口用于扩展不同的功能。 #### 三、GPIO配置详解 MSB2521芯片拥有多个通用输入输出(GPIO)引脚,可用于实现各种外部接口控制。以下是部分GPIO引脚的功能说明: - **GPIO1_CVBS_DET**: CVBS信号检测。 - **GPIO_G07 - GPIO_G21**: 多功能GPIO引脚,具体功能需根据设计需求进行配置。 - **SAR_KEY0 - SAR_KEY1**: 模拟到数字转换器输入,通常用于按键检测。 - **AUXC0**: 辅助输入通道0。 - **Reserved for Menu key**: 预留用于菜单键的GPIO。 #### 四、SPI与NOR Flash接口 - **SPI_CS0** 和 **SPI_CS1**: SPI(串行外设接口)片选信号,用于选择不同的SPI设备。 - **NOR Flash**: 通过SPI接口连接的NOR Flash存储器,用于存放固件或程序代码。 #### 五、其他接口 - **PIF_CS0/PIF_CS1**: PIF(并行接口)片选信号,用于选择不同的PIF设备。 - **UART0 - UART2**: 三个UART(通用异步收发传输器)接口,用于串行通信。其中UART2通常作为调试端口使用。 - **Reserved for External TMC or E-Dog**: 预留给外部TMC(交通信息频道)或E-Dog模块使用的GPIO。 - **Reserved for BT Module**: 预留给蓝牙模块使用的GPIO。 - **GPIO15_TV_RST**: 电视复位信号。 #### 六、电源管理与LED驱动 文档中还提到了一些关于电源管理和LED驱动的关键点: - **VD chip change to MST701**: VD芯片更换为MST701型号。 - **LED Boost output capacitance C38**: LED升压输出电容C38推荐使用10μF/35V/1206规格,以解决在20%占空比下可能出现的闪烁问题。 - **LED Boost I sense resistor R45**: LED升压电流检测电阻R45改为0.15Ω/0603规格。 #### 七、版本历史 - **V1.0** (2010.12.24): 初版,由Nelson完成。主要内容包括:修改了VABB电源供电方式;删除了MSB1303 AGC电路;调整了某些外部下拉电阻的阻值等。 - **V1.1** (2010.12.29): 优化了硬件strap引脚的内部上拉电阻,调整了NOR Flash供电方式等。 - **V1.2** (2011.01.05): 将VD芯片更换为MST701。 - **V1.3** (2011.01.17): 进一步优化了LED Boost电路,解决了低占空比下的闪烁问题。 #### 八、总结 通过对MSB2521 GPS导航仪原理图的深入解析,我们可以了解到这款芯片及其外围电路在实际应用中的设计思路和技术细节。这些信息对于理解和设计类似的导航系统具有重要的参考价值。此外,该文档还提供了具体的版本迭代历史,有助于理解设计过程中遇到的问题及解决方案。
2025-09-27 22:47:29 436KB GPS原理图
1
TOP2812开发板的电路原理图,如果想了解这款开发板的电路可以参考
2025-09-27 20:46:32 96KB TOP2812
1
https://www.bilibili.com/video/BV1VV411v7r3/?spm_id_from=333.337.search-card.all.click B站有些朋友没有PPT资源,评论区问,CSDN分享下
2025-09-27 14:31:26 287.59MB 遥感原理
1
《天线原理设计制作2本》是一套涵盖了无线通信领域中天线理论、设计与制作的书籍,包含《天线原理与设计》和《实用天线设计与制作》两部分。这两本书对于深入理解无线通信系统中的关键组件——天线,提供了详尽的理论基础和实践指导。 《天线原理与设计》主要讲解了天线的基本概念、工作原理以及设计方法。书中可能涵盖以下知识点: 1. **天线的定义与分类**:介绍天线的基本功能,如发射和接收电磁波,并讨论不同类型的天线,如偶极子天线、抛物面天线、螺旋天线等。 2. **电磁波传播**:讲解电磁波在自由空间和介质中的传播特性,包括波长、频率与传播速度的关系。 3. **天线参数**:如增益、方向性图、辐射效率、阻抗匹配等,这些参数直接影响天线性能。 4. **天线理论**:包括基尔霍夫电流定律、麦克斯韦方程在天线分析中的应用,以及辐射场强和辐射功率的计算。 5. **天线设计**:阐述如何根据需求选择合适的天线类型,进行尺寸计算和优化设计。 6. **馈电网络**:探讨馈线的选择、长度匹配,以及如何减少信号损失。 《实用天线设计与制作》则更注重实际操作,可能包含以下内容: 1. **天线制作技术**:介绍材料选择、工艺流程,以及如何利用常见工具制作天线。 2. **实例分析**:提供各种实际应用场景下的天线设计方案,如移动通信基站天线、卫星通信天线等。 3. **实验与测量**:讲解如何使用仪表进行天线性能测试,如驻波比测量、方向性测量等。 4. **天线优化**:如何根据测量结果调整天线参数,提高通信质量。 5. **天线安装与维护**:指导天线的正确安装位置和角度,以及日常维护保养知识。 这两本书结合了理论与实践,适合无线通信工程技术人员、学生以及无线电爱好者学习。通过深入阅读,读者不仅可以掌握天线的基本理论,还能获得实际操作经验,提升无线通信系统的设计与应用能力。
2025-09-27 10:51:46 9.01MB
1
代数多重网格(Algebraic Multigrid, AMG)是一种高效的数值求解线性系统的预处理技术,尤其适用于大规模的、不规则的稀疏矩阵问题。AMG方法起源于几何多重网格(Geometric Multigrid, GMG),但与GMG不同的是,AMG不需要对问题的物理空间进行多尺度的细化描述,而是基于矩阵的代数特性来构建多重网格层次。这种方法具有高度的灵活性,可以应用于各种复杂的工程和科学计算中。 AMG的核心思想是将复杂的大规模问题分解为一系列较小的、相互关联的问题,并在不同的“网格”层次之间进行迭代。通过在粗网格上快速地求解近似解,然后在细网格上校正,从而加速整体的求解过程。AMG的效率在于它能够有效地捕捉到矩阵的固有结构,减少求解过程中不必要的计算。 AMGX是NVIDIA公司开发的一种基于GPU优化的AMG实现,旨在利用图形处理器的强大并行计算能力,提高大规模科学计算的性能。AMGX提供了一种高度可定制的框架,允许用户根据特定的应用场景调整算法参数,以实现最佳性能。它支持多种预处理和后处理技术,如高斯-塞德尔松弛(Gauss-Seidel Relaxation)、最小二乘修正(Least Squares Correction, LSC)等,以及不同类型的矩阵剖分策略。 在AMG的理论中,关键步骤包括: 1. **共轭梯度法(Conjugate Gradient, CG)**:作为基础的迭代求解器,用于求解线性系统。 2. **粗网格选择**:确定粗化策略,如基于谱间隔或连接强度的矩阵特征来构造粗网格。 3. **限制器(Restriction)**:将细网格的残差信息下采样到粗网格,通常采用插值或投影操作。 4. **扩展器(Interpolation)**:将粗网格的解上采样回细网格,以进行校正。 5. **松弛(Relaxation)**:在每层网格上执行局部迭代,以减少误差。 6. **交错(Aggregation)**:用于构建粗网格的单元,可以基于弱连接或其他准则。 AMG的文献资料涵盖了算法的历史发展、理论基础、实现细节以及应用案例。中文资料可以帮助理解基本概念,而英文资料则可能提供更深入的数学分析和技术细节。通过学习这些资料,你可以掌握如何应用AMG和AMGX解决实际问题,例如在流体动力学、固体力学、电磁学等领域的数值模拟。 AMG和AMGX是现代数值计算中的重要工具,它们结合了数学的优雅和计算的效率,对于处理大型科学计算挑战具有不可估量的价值。通过对AMG理论的学习和AMGX的实际操作,工程师和研究人员可以更好地应对高性能计算面临的复杂性和计算量。
2025-09-26 18:40:37 16.7MB gpu
1
基于STM32F103主控的MSB管理系统资料大集合:锂电池管理、功能演示与BQ76940芯片深度解析,基于STM32F103C8T6与BQ76940的锂电池管理系统资料大全:原理图、源码与功能介绍,基于STM32F103主控的MSB管理系统资料 主控芯片STM32F103C8T6,锂电池管理芯片BQ76940。 资料组成:原理图(AD打开,无PCB文件),程序源码,上位机软件,bq76940说明文档,bq76940应用手册。 额外还赠送锂电池源码(喊SOC算法),BMS-DSP源码,BMS常用功能源码(SOC,显示等),DSP28335-BMS模板例程,硬件电路(含原理图与PCB,原理图部分显示不全,介意勿拿)等等。 功能介绍: 1、9 节锂电池电压,电流,温度,SOC 测量(开发板是电 压百分比方案,赠送安时积分法 SOC 算法),通过上位机, 显示屏,蓝牙小程序显示测量结果; 2、实现过压,欠压,过流,短路保护,高温保护,低温 保护; 3、BQ76940 支持芯片内部被动均衡。 ,核心关键词:STM32F103主控; MSB管理系统; 锂电池管理; BQ76940芯片; 原理
2025-09-26 18:04:18 2.28MB 哈希算法
1