本文将介绍经典的网络之循环神经网络(RNN, Recurrent Neural Networks),这一网络也是时序数据的首选网络。当涉及某些顺序机器学习任务时,RNN可以达到很高的精度,没有其他算法可以与之一较高下。这是由于传统的神经网络只是具有一种短期记忆,而RNN具有有限的短期记忆的优势。然而,第一代RNNs网络并没有引起人们着重的注意,这是由于研究人员在利用反向传播和梯度下降算法过程中遭受到了严重的梯度消失问题,阻碍了RNN几十年的发展。最后,于90年代后期出现了重大突破,导致更加准确的新一代RNN的问世。
2022-05-17 16:48:37 362KB LSTM RNN 深度学习 AI
1
LSTM-时间序列预测
2022-05-15 16:06:25 75KB lstm 源码软件 人工智能 rnn
基于动态RNN的PyTorch 基于pytorch的动态rnn的实现
2022-05-14 16:45:33 4KB Python
1
人工智能-项目实践-文本分类-CNN-RNN中文文本分类,基于TensorFlow 使用卷积神经网络以及循环神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 以及字符级CNN的论文:Character-level Convolutional Networks for Text Classification 本文是基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果。 文中所使用的Conv1D与论文中有些不同,详细参考官方文档:tf.nn.conv1d
2022-05-13 09:08:46 410KB 文档资料 cnn rnn tensorflow
LSTM网络的训练和测试,采用时间序列进行测试,训练时间较慢,要耐心等待。 运行注意事项:使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径
2022-05-12 21:05:37 16KB lstm 网络 人工智能 rnn
情感分析 它是一种文本分类,可在IMDB大电影评论数据集上训练递归神经网络(RNN)以进行情感分析。
2022-05-10 20:50:33 5KB JupyterNotebook
1
RNN和LSTM都作为分析时序数据的一种神经网络,有区别也有联系,本人自己总结的RNN与LSTM的关系和案例分析。LSTM在RNN的基础上做了改进,使之对较远时间间隔的数据具有更好的记忆保留,
2022-05-07 15:08:25 1005KB rnn lstm 循环神经网络
1
人工神经网络、CNN、RNN、lstm
2022-05-06 18:47:41 508B 深度学习 cnn 人工智能 神经网络
1
分享 BP CNN RNN LSTM 算法核心点: 反向传播算法的核心就是 梯度下降 + 链式法则求偏导 所谓神经网络的训练或者是学习,其主要目的在于通过学习算法得到神经网络解决指定问题所需的参数, 这里的参数包括各层神经元之间的连接权重以及偏置等
2022-05-06 18:42:07 1.09MB BP CNN RNN LSTM
1
分层注意网络 我对“ ”的实现(Yang等,2016) Yelp的数据可从下载(与Yang的论文中使用的数据集相同) 下载链接: : 将数据放在名为“ data / yelp_YEAR /”的目录中(其中“ YEAR”为年份) 运行“ yelp-preprocess.ipynb”以预处理数据。 格式变为“标签\ t \ t句子1 \ t句子2 ...”。 然后运行“ word2vec.ipynb”以从训练集中训练word2vec模型。 运行“ HAN.ipynb”以训练模型。 运行“ case_study.ipynb”以运行验证集中的一些示例的可视化,包括注意力向量(句子级别和单词级别)和预测结果。 现在,我们在yelp2013测试仪上获得了约65%的准确度。 对超参数进行微调后,它可能会更好。 我们使用的超参数 时代 批量大小 GRU单位 word2vec大小 优化器 学
2022-05-06 10:34:48 5.69MB nlp rnn attention-mechanism paper-implementations
1