PyTorch项目模板由以下工具赞助; 请通过查看并注册免费试用来帮助支持我们 PyTorch项目模板 聪明地实施PyTorch项目。 PyTorch项目的可扩展模板,包括图像分割,对象分类,GAN和强化学习中的示例。 考虑到深度学习项目的性质,我们没有机会考虑项目结构或代码模块化。 在处理了不同的深度学习项目并面对文件组织和代码重复的问题之后,我们提出了一个模块化项目结构来容纳任何PyTorch项目。 我们还想为社区提供各种PyTorch模型的基础。 这是和之间的联合工作 目录: 为什么使用此模板? 我们正在为任何PyTorch项目提出一个基准,以帮助您快速入门,在此您将有时间专注于
2023-02-17 21:03:28 137KB machine-learning deep-learning pytorch dcgan
1
什么是Kam1n0 v2? Kam1n0 v2.x是可扩展的装配管理和分析平台。 它允许用户首先将(大型)二进制文件集合索引到不同的存储库中,并提供不同的分析服务,例如克隆搜索和分类。 通过使用Application的概念,它支持多租户访问和程序集存储库的管理。 应用程序实例包含其自己的专用存储库,并提供专门的分析服务。 考虑到反向工程任务的多功能性,Kam1n0 v2.x服务器当前提供三种不同类型的克隆搜索应用程序: Asm-Clone , Sym1n0和Asm2Vec以及基于Asm2Vec的可执行分类。 可以将新的应用程序类型进一步添加到平台。 用户可以创建多个应用程序实例。 可以在特定的用户组之间共享应用程序实例。 应用程序存储库的读写访问权限和开/关状态可以由应用程序所有者控制。 Kam1n0 v2.x服务器可以使用多个共享资源池同时为应用程序提供服务。 Kam1n0由和在加
1
不平衡学习:一种解决机器学习中不平衡数据集问题的Python程序包
2023-02-13 20:23:36 314KB python data-science machine-learning statistics
1
Machine Learning with R 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2023-02-13 11:17:26 3.3MB Machine Learning R
1
烧瓶薪水预测器 该项目根据经验预测员工的薪水。 模型 model.py训练并将模型保存到磁盘。 model.pkb泡菜模型 应用程式 app.py包含烧瓶和管理API所需的所有内容。 程序-打开命令提示符并转到给定目录,然后运行python app.py
1
机器学习模型房屋价格预测 使用Flask Web框架的机器学习模型进行房价预测
2023-02-10 21:11:37 5KB Python
1
Machine Learning, Neural and Statistical Classification
2023-02-09 21:59:58 1.7MB Machine Learning
1
MobileNets V3的Caffe实现caffe-mobilenet-v3简介这是MobileNetV3的个人Caffe实现。 有关详细信息,请阅读原始文章:搜索MobileNetV3。 如何使用Caffe需求(请参阅:Caffe安装说明)添加新的caffe层并重建caffe:RuiminChen / Caffe-MobileNetV2-ReLU6的yonghenglh6 / DepthwiseConvolution ReLU6层的Depthwise卷积层运行测试CPU:$ CAFFE_ROOT / build / tools /咖啡时间-model mobilenet_v3_large_1.0.prototxt GPU
2023-02-07 15:06:32 10KB C/C++ Machine Learning
1
需求预测在农业、电力、旅游、零售和制造企业等许多行业都具有重要意义,它在每个企业的决策中都起着至关重要的作用。 本文以机器学习为重点,调查了需求预测的各种最新方法。 机器学习技术分为三类,即时间序列分析、基于回归的方法和监督/无监督模型。 讨论了各种机器学习技术的优缺点,并比较了它们的性能指标。 对比掩盖了LSTM有一个显着的结果,但它的计算时间比任何其他方法都要高。 未来研究的另一个领域包括基于回归的方法、混合模型和集成模型。 本研究为读者提供了机器学习领域需求预测的概念。
2023-02-07 00:16:23 544KB Demand Forecasting; Machine Learning;
1
Yelp分析和评级预测 概述 Yelp是一个带有社交网络工具的区域目录平台和审阅网站。 该网站提供了针对本地企业(水疗中心,餐厅,百货公司,酒吧,本地本地服务,商店,汽车)的众包评论。 这有助于用户进行业务评级和评论。 通常,评论是由几百行左右的单词组成的简短文本,描述了各个方面的各种用户体验。 这为企业所有者提供了改进产品的机会,并使客户可以选择最佳的行业。 商业价值/分析目标 管理层可能没有足够的时间来进行每一次审核。 如果可以一目了然地向他们提供有价值的信息和见解,那将是非常有用和节省时间的。 不仅对于管理人员,而且对于试图了解更多餐厅信息并需要一些帮助来订购或选择餐厅的客户,也是如此。 毕竟,在当今世界,每个人都喜欢在做出决定之前先阅读评论和反馈。 在我们的项目中,我们使用自然语言处理和机器学习来实现这些业务和客户目标。 我们专注于情感分析,主题建模,数据分析和评级预测的分类。 数
2023-01-29 20:44:46 2.59MB nlp machine-learning text-analytics yelp-dataset
1