iamQA 中文wiki百科问答系统,本项目使用了torchserver部署模型 知识库:wiki百科中文数据 模型:使用了的NER(CCKS2016数据)和阅读理解模型(CMRC2018),还有Word2Vec词向量搜索。 详细内容可以参考文章: 项目框架 模块介绍 ChineseWiki-master 功能:清洗wiki中文数据 相关项目: NER 功能:从问题中识别实体 例子:qurry:周董是谁? 》》 entiy:周董 模型:ALBERT 数据集:CCKS2016KBQA 相关项目: Word2vec 功能:如果实体不在知识库,则用W2V搜索近似实体 例子:entity:周董 >> ['周杰伦','JAY','林俊杰'] 相关项目: Entity linking 功能:根据NER或W2V得到的mention entity搜索知识库 Reader 功能:阅读理解文段,精确定位答
2023-12-22 16:42:56 636KB wiki Python
1
基于支持向量机SVM的数据分类预测,SVM分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-21 14:34:09 738KB 支持向量机
1
里面包含各类干扰信号的产生,包括:噪声干扰、拖引欺骗干扰以及采样转发干扰; 各类干扰信号的时域特征和频域特征; 采用SVM算法,对各类干扰信号进行分类。
2023-12-15 22:24:22 3.48MB 支持向量机
1
鹈鹕算法(POA)优化最小二乘支持向量机分类预测,POA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 20:19:57 87KB 支持向量机
1
鲸鱼算法(WOA)优化最小二乘支持向量机分类预测,WOA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 20:19:42 87KB 支持向量机
1
灰狼算法(GWO)优化最小二乘支持向量机分类预测,GWO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:43:02 88KB 支持向量机
1
蛇群算法(SO)优化最小二乘支持向量机分类预测,SO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:35:39 88KB 支持向量机
1
MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测; 2.运行环境为Matlab2018b; 3.输入多个特征,分四类预测; 4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹; 5.可视化展示分类准确率。 模型描述 SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。 具体流程如下: 数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。 特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。 AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。 模型评估:对预测结果进行评估。 模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoos
2023-12-11 12:48:07 1KB matlab 支持向量机
1
为了建立直觉模糊向量子空间的统一理论,采用直觉模糊集截集理论和模糊点xa与直觉模糊集A的邻属关系,并利用三值Lukasiewicz蕴涵,给出了(α,β)-直觉模糊向量子空间的定义,由此可以得到16种直觉模糊向量子空间。研究结果表明:(∈,∈)-直觉模糊向量子空间和(∈,∈∨q)-直觉模糊向量子空间是其中两种非常有意义的直觉模糊向量子空间,给出了(∈,∈)-直觉模糊向量子空间和(∈,∈∨q)-直觉模糊向量子空间之间的关系,并得出了(∈,∈∨q)-直觉模糊向量子空间的相关性质。该成果突破了对原有直觉模糊向量子空间的认识,从而为直觉模糊分析理论研究打下基础。
2023-12-10 15:03:34 924KB 行业研究
1
VB源码,用于输出汉字可以消除汉字放大的时候的模糊和锯齿现象
2023-12-09 13:37:58 3KB 输出放大 汉字放大
1