Eye gaze tracking techniques for interactive applications.pdf
2022-06-29 16:04:42 1.13MB 论文
1
管理信息系统:ch06-Enterprise Applications.pdf
2022-06-28 14:00:22 1.43MB 互联网
使用机器学习R和发光的心脏疾病预测 庄主:Soham Bakore 使用R和Shiny创建Web应用程序以使用机器学习预测心脏病 我们正在使用三种机器学习算法,分别是朴素贝叶斯(Naive Bayes),支持向量机(SVM)和决策树。 目前,在支持SVM的Shiny Web应用中实现了精度最高的算法。 用户的“登录和注册”模块正在进行中,将很快更新。
2022-06-17 20:15:43 2.34MB machine-learning r shiny-applications R
1
15.5真机包 点击 :前往-- 前往文件 ---拷贝下面即可: /Applications/Xcode.app/Conten
2022-06-13 18:06:15 8.67MB iOS真机包
1
15.2 真机包 点击 :前往-- 前往文件 ---拷贝下面即可: /Applications/Xcode.app/Conte
2022-06-13 18:06:14 11.4MB iOS真机包
1
Discrete Mathematics and Its Applications 7th
2022-06-11 11:12:08 9.03MB 离散数学
1
完整文字版(英文),带书签目录,介绍分布式原理,非常非常好的一本书。作者:马丁·科勒普曼 ,目录如下: Part I. Foundations of Data Systems 1. Reliable, Scalable, and Maintainable Applications 3 Thinking About Data Systems 4 Reliability 6 Hardware Faults 7 Software Errors 8 Human Errors 9 How Important Is Reliability? 10 Scalability 10 Describing Load 11 Describing Performance 13 Approaches for Coping with Load 17 Maintainability 18 Operability: Making Life Easy for Operations 19 Simplicity: Managing Complexity 20 Evolvability: Making Change Easy 21 Summary 22 2. Data Models and Query Languages 27 Relational Model Versus Document Model 28 The Birth of NoSQL 29 The Object-Relational Mismatch 29 Many-to-One and Many-to-Many Relationships 33 Are Document Databases Repeating History? 36 Relational Versus Document Databases Today 38 Query Languages for Data 42 Declarative Queries on the Web 44 MapReduce Querying 46 Graph-Like Data Models 49 Property Graphs 50 The Cypher Query Language 52 Graph Queries in SQL 53 Triple-Stores and SPARQL 55 The Foundation: Datalog 60 Summary 63 3. Storage and Retrieval 69 Data Structures That Power Your Database 70 Hash Indexes 72 SSTables and LSM-Trees 76 B-Trees 79 Comparing B-Trees and LSM-Trees 83 Other Indexing Structures 85 Transaction Processing or Analytics? 90 Data Warehousing 91 Stars and Snowflakes: Schemas for Analytics 93 Column-Oriented Storage 95 Column Compression 97 Sort Order in Column Storage 99 Writing to Column-Oriented Storage 101 Aggregation: Data Cubes and Materialized Views 101 Summary 103 4. Encoding and Evolution 111 Formats for Encoding Data 112 Language-Specific Formats 113 JSON, XML, and Binary Variants 114 Thrift and Protocol Buffers 117 Avro 122 The Merits of Schemas 127 Modes of Dataflow 128 Dataflow Through Databases 129 Dataflow Through Services: REST and RPC 131 Message-Passing Dataflow 136 Summary 139 Part II. Distributed Data 5. Replication 151 Leaders and Followers 152 Synchronous Versus Asynchronous Replication 153 Setting Up New Followers 155 Handling Node Outages 156 Implementation of Replication Logs 158 Problems with Replication Lag 161 Reading Your Own Writes 162 Monotonic Reads 164 Consistent Prefix Reads 165 Solutions for Replication Lag 167 Multi-Leader Replication 168 Use Cases for Multi-Leader Replication 168 Handling Write Conflicts 171 Multi-Leader Replication Topologies 175 Leaderless Replication 177 Writing to the Database When a Node Is Down 177 Limitations of Quorum Consistency 181 Sloppy Quorums and Hinted Handoff 183 Detecting Concurrent Writes 184 Summary 192 6. Partitioning 199 Partitioning and Replication 200 Partitioning of Key-Value Data 201 Partitioning by Key Range 202 Partitioning by Hash of Key 203 Skewed Workloads and Relieving Hot Spots 205 Partitioning and Secondary Indexes 206 Partitioning Secondary Indexes by Document 206 Partitioning Secondary Indexes by Term 208 Rebalancing Partitions 209 Strategies for Rebalancing 210 Operations: Automatic or Manual Rebalancing 213 Request Routing 214 Parallel Query Execution 216 Summary 216 7. Transactions 221 The Slippery Concept of a Transaction 222 The Meaning of ACID 223 Single-Object and Multi-Object Operations 228 Weak Isolation Levels 233 Read Committed 234 Snapshot Isolation and Repeatable Read 237 Preventing Lost Updates 242 Write Skew and Phantoms 246 Serializability 251 Actual Serial Execution 252 Two-Phase Locking (2PL) 257 Serializable Snapshot Isolation (SSI) 261 Summary 266 8. The Trouble with Distributed Systems 273 Faults and Partial Failures 274 Cloud Computing and Supercomputing 275 Unreliable Networks 277 Network Faults in Practice 279 Detecting Faults 280 Timeouts and Unbounded Delays 281 Synchronous Versus Asynchronous Networks 284 Unreliable Clocks 287 Monotonic Versus Time-of-Day Clocks 288 Clock Synchronization and Accuracy 289 Relying on Synchronized Clocks 291 Process Pauses 295 Knowledge, Truth, and Lies 300 The Truth Is Defined by the Majority 300 Byzantine Faults 304 System Model and Reality 306 Summary 310 9. Consistency and Consensus 321 Consistency Guarantees 322 Linearizability 324 What Makes a System Linearizable? 325 Relying on Linearizability 330 Implementing Linearizable Systems 332 The Cost of Linearizability 335 Ordering Guarantees 339 Ordering and Causality 339 Sequence Number Ordering 343 Total Order Broadcast 348 Distributed Transactions and Consensus 352 Atomic Commit and Two-Phase Commit (2PC) 354 Distributed Transactions in Practice 360 Fault-Tolerant Consensus 364 Membership and Coordination Services 370 Summary 373 Part III. Derived Data 10. Batch Processing 389 Batch Processing with Unix Tools 391 Simple Log Analysis 391 The Unix Philosophy 394 MapReduce and Distributed Filesystems 397 MapReduce Job Execution 399 Reduce-Side Joins and Grouping 403 Map-Side Joins 408 The Output of Batch Workflows 411 Comparing Hadoop to Distributed Databases 414 Beyond MapReduce 419 Materialization of Intermediate State 419 Graphs and Iterative Processing 424 High-Level APIs and Languages 426 Summary 429 11. Stream Processing 439 Transmitting Event Streams 440 Messaging Systems 441 Partitioned Logs 446 Databases and Streams 451 Keeping Systems in Sync 452 Change Data Capture 454 Event Sourcing 457 State, Streams, and Immutability 459 Processing Streams 464 Uses of Stream Processing 465 Reasoning About Time 468 Stream Joins 472 Fault Tolerance 476 Summary 479 12. The Future of Data Systems 489 Data Integration 490 Combining Specialized Tools by Deriving Data 490 Batch and Stream Processing 494 Unbundling Databases 499 Composing Data Storage Technologies 499 Designing Applications Around Dataflow 504 Observing Derived State 509 Aiming for Correctness 515 The End-to-End Argument for Databases 516 Enforcing Constraints 521 Timeliness and Integrity 524 Trust, but Verify 528 Doing the Right Thing 533 Predictive Analytics 533 Privacy and Tracking 536 Summary 543 Glossary 553 Index 559
2022-06-09 10:02:14 21.55MB 分布式 大数据 技术理念
1
如今,Web应用程序对于在许多领域(例如,资金,基于Web的业务,人力资源等)的利用具有巨大的价值和惊人的价值,因此必须对其进行全面验证。 应用程序可能很容易受到攻击,因此被攻击者滥用以获取客户的凭据。 交叉脚本(XSS)是Web应用程序的重大风险,因为它是对Web应用程序的基本而简单的攻击。 Xss为攻击设置了平台,例如跨站点请求会话劫持,伪造...等。 XSS攻击是一种注入攻击,其中攻击者在客户端程序的用户端或数据库的服务器端将侵犯性内容注入站点。 恶意代码基本上是JavaScript代码,并且在Web应用程序的输入字段中执行。 XSS攻击的类型为非持久(或反映)的XSS,持久(或存储的)XSS和基于DOM的漏洞。 跨站点脚本(XSS)漏洞的主要原因是无法清理植入网页中的用户输入。 尽管采用了安全的编码技术并使用了漏洞检测工具,但XSS仍保留在许多Web应用程序中,因为该方法非常复杂,方法的实现不正确,缺乏漏洞知识。 在本文中,我们调查了XSS攻击,预防基于存储的XSS和基于DOM的XSS的原因和方法。
2022-06-07 22:46:44 292KB XSS Web Applications Security
1
软件工程英文教学课件:Ch18 Testing Conventional Applications.ppt
2022-06-06 09:07:47 1.65MB 文档资料 软件工程
Complex Variables and Applications
2022-06-05 21:10:26 10.09MB Complex Variables and Applications
1